Mechanosensitive ion channels, particularly Piezo channels, are widely expressed in various tissues. However, their role in immune cells remains underexplored. Therefore, this study aimed to investigate the functional role of Piezo1 in the human eosinophil cell line AML14.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
February 2021
In allergic airway diseases, intermediate progenitor cells (IPCs) increase in number in the surface epithelium. IPCs arise from basal cells, the origin of hallmark pathological changes, including goblet cell hyperplasia and mucus hypersecretion. Thus, targeting IPCs will benefit future treatment of allergic airway diseases.
View Article and Find Full Text PDFObjective: To investigate the effects of real repetitive peripheral magnetic stimulation (rPMS) treatment compared to sham rPMS treatment on pain reduction and functional recovery of patients with acute low back pain.
Methods: A total of 26 patients with acute low back pain were randomly allocated to the real rPMS group and the sham rPMS group. Subjects were then administered a total of 10 treatment sessions.
Objectives: West syndrome (also known as infantile spasm because of its main seizure type) is a rare form of epilepsy that begins during early infancy. Recent guidelines and reviews on West syndrome recommend the use of adrenocorticotropic hormone steroids, or vigabatrin, as the first-line treatment. However, West syndrome remains to be one of the most challenging epilepsies to treat.
View Article and Find Full Text PDFMetal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switching memory devices were fabricated with nano-template-assisted bottom up growth.
View Article and Find Full Text PDFNanotechnology
January 2014
Organic semiconductors have great potential for future electronic applications owing to their inherent flexibility, low cost, light weight and ability to easily cover large areas. However, all of these advantageous material properties can only be harnessed if simple, cheap and low-temperature fabrication processes, which exclude the need for vacuum deposition and are compatible with flexible plastic substrates, are employed. There are a few solution-based techniques such as spin-coating and inkjet printing that meet the above criteria.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) need feeder cells for their maintenance in an undifferentiated state. In conventional culture systems, mouse embryonic fibroblasts (MEFs) serve as feeder cells to maintain hESCs. However, the use of MEFs elevates the risk of transmitting mouse pathogens and thus limits the potential of hESCs in cell replacement therapy.
View Article and Find Full Text PDFHuman embryonic stem (hES) cells, unlike most cells derived from adult or fetal human tissues, represent a potentially unlimited source of various cell types for basic clinical research. To meet the increased demand for characterized hES cell lines, we established and characterized nine new lines obtained from frozen-thawed pronucleus-stage embryos. In addition, we improved the derivation efficiency from inner cell masses (to 47.
View Article and Find Full Text PDFMouse embryonic fibroblasts (MEFs) have been previously used as feeder cells to support the growth of human embryonic stem cells (hESCs). In this study, human adult uterine endometrial cells (hUECs), human adult breast parenchymal cells (hBPCs) and embryonic fibroblasts (hEFs) were tested as feeder cells for supporting the growth of hESCs to prevent the possibility of contamination from animal feeder cells. Cultured hUECs, hBPCs and hEFs were mitotically inactivated and then plated.
View Article and Find Full Text PDFHuman embryonic stem (ES) cells and embryonic germ (EG) cells are pluripotent and are invaluable material for in vitro studies of human embryogenesis and cell therapy. So far, only two groups have reported the establishment of human EG cell lines, whereas at least five human ES cell lines have been established. To see if human EG cell lines can be reproducibly established, we isolated primordial germ cells (PGCs) from gonadal ridges and mesenteries (9 weeks post-fertilization) and cultured them on mouse STO cells.
View Article and Find Full Text PDF