Publications by authors named "Ji Hyun Um"

TCP13 belongs to a subgroup of TCP transcription factors implicated in the shade avoidance syndrome (SAS), but its exact role remains unclear. Here, we show that TCP13 promotes the SAS-like response by enhancing hypocotyl elongation and suppressing flavonoid biosynthesis as a part of the incoherent feed-forward loop in light signaling. Shade is known to promote the SAS by activating PHYTOCHROME-INTERACTING FACTOR (PIF)-auxin signaling in plants, but we found no evidence in a transcriptome analysis that TCP13 activates PIF-auxin signaling.

View Article and Find Full Text PDF

ConspectusUntil recently, most studies on nucleation and growth mechanisms have employed electrochemical transient measurements, and numerous models have been established on various metal electrode elements. Contrary to the conventional tip-induced nucleation and growth model, a base-induced nucleation and growth mode was discovered not so long ago, which highlighted the importance of direct real-time observations such as visualization. As analysis techniques developed, diverse imaging methods have spurred the fundamental understanding of complex and dynamic battery electrochemistry.

View Article and Find Full Text PDF

Because of the abundance and cost effectiveness of sodium, rechargeable sodium metal batteries have been widely studied to replace current lithium-ion batteries. However, there are some critical unresolved issues including the high reactivity of sodium, an unstable solid-electrolyte interphase (SEI), and sodium dendrite formation. While several studies have been conducted to understand sodium plating/stripping processes, only a very limited number of studies have been carried out under conditions.

View Article and Find Full Text PDF

By simple pyrolysis of a tin salen complex [Sn(salen)] and sulfur powder at 700 °C, SnS nanoparticles with ∼20 nm thickness homogeneously embedded in nitrogen-doped carbon are prepared. When applied as lithium-ion battery anodes, the SnS/N-C nanocomposites exhibited long cycling stability and excellent rate capability.

View Article and Find Full Text PDF

To advance current Li rechargeable batteries further, tremendous emphasis has been made on the development of anode materials with higher capacities than the widely commercialized graphite. Some of these anode materials exhibit capacities above the theoretical value predicted based on conventional mechanisms of Li storage, namely insertion, alloying, and conversion. In addition, in contrast to conventional observations of loss upon cycling, the capacity has been found to increase during repeated cycling in a significant number of cases.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies show that traditionally inactive metal nanoparticles, like ruthenium, actually participate in lithium-ion battery reactions through catalytic and interfacial effects.
  • A study prepared ≈5 nm ruthenium nanoparticles as an anode, aiming to understand the unusual lithium storage mechanisms that do not involve typical redox reactions but instead cause lattice expansion.
  • The findings reveal that smaller nanoparticles can enhance lithium adsorption by enabling charge redistribution at the surface, highlighting their significance in the dynamic behavior of rechargeable lithium batteries.
View Article and Find Full Text PDF

The conventional view of conversion reaction is based on the reversibility, returning to an initial material structure through reverse reaction at each cycle in cycle life, which impedes the complete understanding on a working mechanism upon a progression of cycles in conversion-reaction-based battery electrodes. Herein, a series of tin-doped ferrites (FeSn O, x = 0-0.36) are prepared and applied to a lithium-ion battery anode.

View Article and Find Full Text PDF
Article Synopsis
  • Biomass-derived carbon made from hemp stems provides a low-cost and eco-friendly alternative for carbon materials, aiding in waste management.
  • A new method using steam to activate the hemp has resulted in carbon with a porous structure, now being used for lithium-ion battery anodes, achieving a reversible capacity of 190 mA h/g over 100 cycles.
  • Further processing through ball-milling enhances the carbon's capacity to 300 mA h/g, improving its ability to store lithium effectively due to increased graphitization and porosity.
View Article and Find Full Text PDF

It is widely accepted that solid electrolyte interphase (SEI) layer of carbonaceous material is formed by irreversible decomposition reaction of an electrolyte, and acts as a passivation layer to prevent further decomposition of the electrolyte, ensuring reliable operation of a Li-ion battery. On the other hand, recent studies have reported that some transition metal oxide anode materials undergo reversible decomposition of an organic electrolyte during cycling, which is completely different from carbonaceous anode materials. In this work, we revisit the electrochemical reaction of an electrolyte that produces SEI layer on the surface of carbonaceous anode materials using soft X-ray absorption spectroscopy.

View Article and Find Full Text PDF

A three dimensional vanadium pentoxide/reduced graphene oxide/carbon nanotube (3D V2O5/RGO/CNT) composite is synthesized by microwave-assisted hydrothermal method. The combination of 2D RGO and 1D CNT establishes continuous 3D conductive network, and most notably, the 1D CNT is designed to form hierarchically porous structure by penetrating into V2O5 microsphere assembly constituted of numerous V2O5 nanoparticles. The highly porous V2O5 microsphere enhances electrolyte contact and shortens Li(+) diffusion path as a consequence of its developed surface area and mesoporosity.

View Article and Find Full Text PDF

The particle size effects of TiO2 nanoparticles (TNPs), which are composed of small crystallites, on Li ion storage are a very fundamental and important subject. However, size control of TNPs under 200 nm using a sol-gel method has been limited due to the highly reactive precursor, titanium alkoxide. In this study, TNPs with various sizes even under 100 nm are obtained by controlling the reactant concentrations in a mixed solvent of ethanol and acetonitrile.

View Article and Find Full Text PDF

A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer.

View Article and Find Full Text PDF

Yolk-shell-structured nanoparticles with iron oxide core, void, and a titania shell configuration are prepared by a simple soft template method and used as the anode material for lithium ion batteries. The iron oxide-titania yolk-shell nanoparticles (IO@void@TNPs) exhibit a higher and more stable capacity than simply mixed nanoparticles of iron oxide and hollow titania because of the unique structure obtained by the perfect separation between iron oxide nanoparticles, in combination with the adequate internal void space provided by stable titania shells. Moreover, the structural effect of IO@void@TNPs clearly demonstrates that the capacity retention value after 50 cycles is approximately 4 times that for IONPs under harsh operating conditions, that is, when the temperature is increased to 80 °C.

View Article and Find Full Text PDF

Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper class I (HD-Zip I) gene, is highly expressed in leaves and stems, and induced by abiotic stresses, but its role in development remains obscure. To understand its function during plant development, we studied the effects of loss and gain of function. Expression of ATHB12 fused to the EAR-motif repression domain (SRDX) - P35 S ::ATHB12SRDX (A12SRDX) and PATHB 12 ::ATHB12SRDX - slowed both leaf and root growth, while the growth of ATHB12-overexpressing seedlings (A12OX) was accelerated.

View Article and Find Full Text PDF

Legume-Rhizobium spp. symbiosis requires signaling between the symbiotic partners and differential expression of plant genes during nodule development. Previously, we cloned a gene encoding a putative β-carotene hydroxylase (GmBCH1) from soybean (Glycine max) whose expression increased during nodulation with Bradyrhizobium japonicum.

View Article and Find Full Text PDF

Symbiotic nodule formation on legume roots is characterized with a series of developmental reprograming in root tissues, including extensive proliferation of cortical cells. We examined a possible involvement of the target of rapamycin (TOR) pathway, a central regulator of cell growth and proliferation in animals and yeasts, during soybean nodule development. Our results show that transcription of both GmTOR and its key downstream effector, GmS6K1, are activated during nodulation, which is paralleled with higher kinase activities of these gene products as well.

View Article and Find Full Text PDF