Background: The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response.
Methods: The onset of antidepressant response was assessed through depression-related behavioral paradigms.
Background: Xiaoyaosan (XYS), a traditional Chinese medicine formulation, has been used in the treatment of depression. However, no studies have yet identified the active compounds responsible for its antidepressant effects in the brain.
Study Design: We investigated the antidepressants effects of XYS and identified 18β-glycyrrhetinic acid (18β-GA) as the primary compound present in the brain following XYS injection.
Depression is a prevalent psychiatric disorder with accumulating evidence implicating dysregulation of extracellular adenosine triphosphate (ATP) levels in the medial prefrontal cortex (mPFC). It remains unclear whether facilitating endogenous ATP production and subsequently increasing extracellular ATP level in the mPFC can exert a prophylactic effect against chronic social defeat stress (CSDS)-induced depressive-like behaviors and enhance stress resilience. Here, we found that nicotinamide mononucleotide (NMN) treatment effectively elevated nicotinamide adenine dinucleotide (NAD) biosynthesis and extracellular ATP levels in the mPFC.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) aggregates called Lewy bodies leading to the gradual loss of dopaminergic (DA) neurons in the substantia nigra. Although α-syn expression can be attenuated by antisense oligonucleotides (ASOs) and heteroduplex oligonucleotide (HDO) by intracerebroventricular (ICV) injection, the challenge to peripheral targeted delivery of oligonucleotide safely and effectively into DA neurons remains unresolved. Here, we designed a new DNA/DNA double-stranded (complementary DNA, coDNA) molecule with cholesterol conjugation (Chol-HDO (coDNA)) based on an α-syn-ASO sequence and evaluated its silence efficiency.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by the formation of Lewy bodies (LBs) in the brain. These LBs are primarily composed of α-Synuclein (α-Syn), which has aggregated. A recent report proposes that CCAAT/enhancer-binding proteins β (C/EBPβ) may act as an age-dependent transcription factor for α-Syn, thereby initiating PD pathologies by regulating its transcription.
View Article and Find Full Text PDFRationale: 18β-glycyrrhetinic acid (18β-GA) has been reported to have anti-inflammatory and neuroprotective effects. However, the therapeutic effect of 18β-GA in Parkinson's disease (PD) has not been defined.
Objective: The current study aimed to evaluate the potential therapeutic effects of 18β-GA in treating PD by mitigating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity.
Cholangiocarcinoma (CCA) is a highly heterogeneous and metastatic malignancy with a poor prognosis even after curative hepatectomy. Studies exploring its pathogenesis and identifying effective therapeutic targets are urgently needed. In this study, we found that TANK-binding kinase 1 (TBK1), a serine/threonine-protein kinase, showed a dynamic increase during the different stages of murine spontaneous CCA carcinogenesis (hyperplasia, dysplasia, and CCA).
View Article and Find Full Text PDFSince its initial identification in 1986, Lyme disease has been clinically diagnosed in 29 provinces in China; however, national incidence data are lacking. To summarize Lyme disease seropositivity data among persons across China, we conducted a systematic literature review of Chinese- and English-language journal articles published during 2005‒2020. According to 72 estimates that measured IgG by using a diagnostic enzyme-linked assay (EIA) alone, the seropositivity point prevalence with a fixed-effects model was 9.
View Article and Find Full Text PDFThe expression of the triggering receptor on myeloid cell-2 (TREM2) knockdown in microglia from the lateral habenula (LHb) reportedly induces depression-like behaviors in mice. However, the key molecular mechanism that mediates major depressive disorder (MDD) pathogenesis remains elusive. We herein show that Nrf2 regulates TREM2 transcription and effects TREM2 mRNA and protein expression.
View Article and Find Full Text PDFBackground: Feruloylated oligosaccharides (FOs) are natural esterification products of ferulic acid and oligosaccharides.
Study Design: In this study, we examined whether FOs contribute to the ensured survival of nigrostriatal dopamine neurons and inhibition of neuroinflammation in Parkinson's disease (PD).
Methods: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg) was injected intraperitoneally into mice to establish a Parkinson's disease (PD) mouse model.
Neuropharmacology
November 2022
The N-methyl-d-aspartate receptor (NMDAR) antagonist (R,S)-ketamine causes rapid onset and sustained antidepressant actions in treatment-resistant patients with major depressive disorder (MDD) and other psychiatric disorders, such as bipolar disorder and post-traumatic stress disorder. (R,S)-ketamine is a racemic mixture consisting of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine), with (S)-enantiomer having greater affinity for the NMDAR. In 2019, an esketamine nasal spray by Johnson & Johnson was approved in the USA and Europe for treatment-resistant depression.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by the formation of Lewy bodies (LBs) in the brain. LBs are mainly composed of phosphorylated and aggregated α-synuclein (α-Syn). Thus, strategies to reduce the expression of α-Syn offer promising therapeutic avenues for PD.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2022
Rationale: There is accumulating evidence to support the idea that brain-derived neurotrophic factor (BDNF) is involved in stress resilience. However, the precise molecular mechanisms underlying resilience in major depressive disorder (MDD) remain unknown.
Objective: The objective of this study was to explore the role of methyl CpG binding protein 2 (MeCP2) and the BDNF/tropomyosin-receptor-kinase B (TrkB) signaling pathway in the stress resilience to chronic social defeat stress (CSDS) in mice.
Mounting evidence suggests the key role of brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity of Parkinson's disease (PD). Activation of NF-E2-related factor-2 (Nrf2) and inhibition of methyl CpG-binding protein 2 (MeCP2) can regulate BDNF upregulation. However, the regulation of BDNF by Nrf2 and MeCP2 in the PD pathogenesis has not been reported.
View Article and Find Full Text PDFUncoupling protein-1 (UCP1), located at the inner membrane of mitochondria, is expressed primarily in brown adipose tissue and mediates the permeability of protons through the inner mitochondrial membrane. This research examines whether human UCP1 can uncouple oxidative phosphorylation in E. coli.
View Article and Find Full Text PDFApoE4 is a major genetic risk determinant for Alzheimer's disease (AD) and drives its pathogenesis via Aβ-dependent and -independent pathways. C/EBPβ, a proinflammatory cytokine-activated transcription factor, is upregulated in AD patients and increases cytokines and δ-secretase expression. Under physiological conditions, ApoE is mainly expressed in glial cells, but its neuronal expression is highly elevated under pathological stresses.
View Article and Find Full Text PDF(R,S)-ketamine elicits rapid-acting and sustained antidepressant actions in treatment-resistant patients with depression. (R)-ketamine produces longer-lasting antidepressant effects than (S)-ketamine in rodents; however, the precise molecular mechanisms underlying antidepressant actions of (R)-ketamine remain unknown. Using isobaric Tag for Relative and Absolute Quantification, we identified nuclear receptor-binding protein 1 (NRBP1) that could contribute to different antidepressant-like effects of the two enantiomers in chronic social defeat stress (CSDS) model.
View Article and Find Full Text PDFRationale: Forgetting of fear memory is a current medical therapy for posttraumatic stress disorder (PTSD), and hippocampal long-term depression (LTD) may be the underlying mechanism. Neuregulin 1 (NRG1), a trophic factor, reportedly modulates memory consolidation and synaptic plasticity.
Methods: Fear memory was assessed using contextual fear conditioning.
The transcription factor erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF) play a key role in depression. However, the molecular mechanisms underlying the crosstalk between Nrf2 and BDNF in depression remain unclear. We examined whether Nrf2 regulates the transcription of Bdnf by binding to its exon I promoter.
View Article and Find Full Text PDF