Publications by authors named "Ji Chul Kim"

Humans tend to synchronize spontaneously to rhythmic stimuli or with other humans, but they can also desynchronize intentionally in certain situations. In this study, we investigate the dynamics of intentional sensorimotor desynchronization using phasing performance in music as an experimental paradigm. Phasing is a compositional technique in modern music that requires musicians to desynchronize from each other in a controlled manner.

View Article and Find Full Text PDF

African swine fever (ASF), a viral disease caused by the African swine fever virus (ASFV), is associated with high mortality rates in domestic pigs and wild boars. ASF has been spreading since its discovery in wild boars in Korea in October 2019. Genomic analyses have provided insights into the genetic diversity of the ASFV isolated from various regions, enabling a better understanding of the virus origin and transmission patterns.

View Article and Find Full Text PDF

A musician's spontaneous rate of movement, called spontaneous motor tempo (SMT), can be measured while spontaneously playing a simple melody. Data shows that the SMT influences the musician's tempo and synchronization. In this study we present a model that captures these phenomena.

View Article and Find Full Text PDF

Rhythmicity permeates large parts of human experience. Humans generate various motor and brain rhythms spanning a range of frequencies. We also experience and synchronize to externally imposed rhythmicity, for example from music and song or from the 24-h light-dark cycles of the sun.

View Article and Find Full Text PDF

Perception-action coordination (also known as sensorimotor synchronization, SMS) is often studied by analyzing motor coordination with auditory rhythms. The current study assesses phasing-a compositional technique in which two people tap the same rhythm at varying phases by adjusting tempi-to explore how SMS is impacted by individual and situational factors. After practice trials, participants engaged in the experimental phasing task with a metronome at tempi ranging from 80-140 beats per minute (bpm).

View Article and Find Full Text PDF

Neural entrainment to musical rhythm is thought to underlie the perception and production of music. In aging populations, the strength of neural entrainment to rhythm has been found to be attenuated, particularly during attentive listening to auditory streams. However, previous studies on neural entrainment to rhythm and aging have often employed artificial auditory rhythms or limited pieces of recorded, naturalistic music, failing to account for the diversity of rhythmic structures found in natural music.

View Article and Find Full Text PDF

Feasible local motion planning for autonomous mobile robots in dynamic environments requires predicting how the scene evolves. Conventional navigation stakes rely on a local map to represent how a dynamic scene changes over time. However, these navigation stakes depend highly on the accuracy of the environmental map and the number of obstacles.

View Article and Find Full Text PDF

Musical rhythm abilities-the perception of and coordinated action to the rhythmic structure of music-undergo remarkable change over human development. In the current paper, we introduce a theoretical framework for modeling the development of musical rhythm. The framework, based on Neural Resonance Theory (NRT), explains rhythm development in terms of and , which are formalized using a general theory that includes non-linear resonance and Hebbian plasticity.

View Article and Find Full Text PDF

Vehicles today have many advanced driver assistance control systems that improve vehicle safety and comfort. With the development of more sophisticated vehicle electronic control and autonomous driving technology, the need and effort to estimate road surface conditions is increasing. In this paper, a real-time road surface classification algorithm, based on a deep neural network, is developed using a database collected through an intelligent tire sensor system with a three-axis accelerometer installed inside the tire.

View Article and Find Full Text PDF

Previous work suggests that auditory-vestibular interactions, which emerge during bodily movement to music, can influence the perception of musical rhythm. In a seminal study on the ontogeny of musical rhythm, Phillips-Silver and Trainor (2005) found that bouncing infants to an unaccented rhythm influenced infants' perceptual preferences for accented rhythms that matched the rate of bouncing. In the current study, we ask whether nascent, diffuse coupling between auditory and motor systems is sufficient to bootstrap short-term Hebbian plasticity in the auditory system and explain infants' preferences for accented rhythms thought to arise from auditory-vestibular interactions.

View Article and Find Full Text PDF

We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks. We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences between component oscillators. We then study a model for gradient frequency neural networks (GrFNNs) which extends the single-frequency model by introducing frequency detuning and nonlinear coupling terms for multifrequency interactions.

View Article and Find Full Text PDF

In recent years, music-based interventions (MBIs) have risen in popularity as a non-invasive, sustainable form of care for treating dementia-related disorders, such as Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD). Despite their clinical potential, evidence regarding the efficacy of MBIs on patient outcomes is mixed. Recently, a line of related research has begun to investigate the clinical impact of non-invasive Gamma-frequency (e.

View Article and Find Full Text PDF

Nonlinear responses to acoustic signals arise through active processes in the cochlea, which has an exquisite sensitivity and wide dynamic range that can be explained by critical nonlinear oscillations of outer hair cells. Here we ask how the interaction of critical nonlinearities with the basilar membrane and other organ of Corti components could determine tuning properties of the mammalian cochlea. We propose a canonical oscillator model that captures the dynamics of the interaction between the basilar membrane and organ of Corti, using a pair of coupled oscillators for each place along the cochlea.

View Article and Find Full Text PDF

We study mode locking in a canonical model of gradient frequency neural networks under periodic forcing. The canonical model is a generic mathematical model for a network of nonlinear oscillators tuned to a range of distinct frequencies. It is mathematically more tractable than biological neuron models and allows close analysis of mode-locking behaviors.

View Article and Find Full Text PDF

Tonal melody can imply vertical harmony through a sequence of tones. Current methods for automatic chord estimation commonly use chroma-based features extracted from audio signals. However, the implied harmony of unaccompanied melodies can be difficult to estimate on the basis of chroma content in the presence of frequent nonchord tones.

View Article and Find Full Text PDF

Background: Successful adaptation of refugees to a new society can be hindered by traumatic experiences and psychiatric symptoms. This study aims to examine the relationship between trauma, psychiatric symptoms and life satisfaction of North Korean refugees resettled in South Korea.

Methods: A total of 211 North Korean refugees living in South Korea completed a series of questionnaires on the history of their previous traumatic experiences, life satisfaction in South Korea, depression, anxiety, somatization and post-traumatic stress disorder (PTSD) symptoms.

View Article and Find Full Text PDF

A tendon-driven robot joint that has a low inertia compared with a conventional drive system is proposed. The robot joint displaces the drive system toward the robot base, and it is driven by twisted string actuators (TSAs), which are a substitute for the conventional heavy drive system. The design of the proposed robot joint is based on an antagonistic scheme that is actuated by two motors.

View Article and Find Full Text PDF

Background: In the present study, various freezing containers were tested for mouse embryos of respective developmental stages; embryos were vitrified and then their survival rate and developmental rate were monitored. Mouse two cell, 8 cell, and blastula stage embryos underwent vitrification freezing-thawing and then their recovery rate, survival rate, development rate, and hatching rate were investigated.

Methods: EM-grid, OPS, and cryo-loop were utilized for vitrification freezing-thawing of mouse embryos.

View Article and Find Full Text PDF

Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal.

View Article and Find Full Text PDF

By integrating four photo-interrupters in a cross-shaped structure, we developed a compact three-axis optical force/torque (F/T) sensor. The developed sensor has a diameter of 28 mm and a thickness of 7 mm. Despite simplicity and compactness, the experiments with a prototype of the proposed sensor demonstrate notably high accuracy.

View Article and Find Full Text PDF

The auditory nervous system is highly nonlinear. Some nonlinear responses arise through active processes in the cochlea, while others may arise in neural populations of the cochlear nucleus, inferior colliculus and higher auditory areas. In humans, auditory brainstem recordings reveal nonlinear population responses to combinations of pure tones, and to musical intervals composed of complex tones.

View Article and Find Full Text PDF

This study analyzed the relationship between type of discoid lateral menisci and tear pattern. There were 108 consecutive cases (103 patients) with discoid lateral meniscus tear treated by arthroscopy. Regarding type of discoid meniscus (Watanabe's classification), 38 cases were "complete" and 70 cases "incomplete.

View Article and Find Full Text PDF