Owing to the complexity of tumor treatment, clinical tumor treatment has evolved from a single treatment mode to multiple combined treatment modes. Reducing the tolerance of tumors to heat and the toxicity of chemotherapy drugs to the body, as well as increasing the sensitivity of tumors to photothermal therapy and chemotherapy drugs, are key issues that urgently need to be addressed in the current cancer treatment. In this work, polylactic acid-based drug nanoparticles (PLA@DOX/GA/ICG) were synthesized with good photothermal conversion ability by encapsulating the water-soluble anticancer drug doxorubicin (DOX), photothermal conversion agent indocyanine green (ICG) and liposoluble drug gambogic acid (GA) using a double emulsion method.
View Article and Find Full Text PDFAs an effective strategy for oncotherapy, developing efficacious drug delivery systems for cancer combination therapy remains a major challenge. To improve nanodrug biocompatibility and composite function facilitating their clinical conversion application, a novel nanocarrier was presented by a facile method through conjugating humic acid with gadolinium ions to synthesize HA-Gd with good biocompatibility and dispersity. HA-Gd exhibited high photothermal conversion efficiency up to 38%, excellent photothermal stability, and high doxorubicin (DOX) loading capacity (93%) with pH-responsive release properties.
View Article and Find Full Text PDFThree new abietane-type diterpenoids, named callicapoic acid M3 (), callicapoic acid M4 () and callicapoic acid M5 (), were isolated from the Vahl. Their structures were established by spectroscopic techniques (IR, UV, MS, 1D and 2D NMR). All the isolated three compounds were evaluated for inhibitory activity on NO production in LPS-activated RAW 264.
View Article and Find Full Text PDF