MicroRNAs (miRNA) are endogenously produced small, non-coded, single-stranded RNAs. Due to their involvement in various cellular processes and cross-communication with extracellular components, miRNAs are often coined the "grand managers" of the cell. miRNAs are frequently involved in upregulation as well as downregulation of specific gene expression and thus, are often found to play a vital role in the pathogenesis of multiple diseases.
View Article and Find Full Text PDFBackground: Stem cell-released exosomes (EXs) have shown beneficial effects on regenerative diseases. Our previous study has revealed that EXs of endothelial progenitor cells (EPC-EXs) can elicit favorable effects on endothelial function. EXs may vary greatly in size, composition, and cargo uptake rate depending on the origins and stimulus; notably, EXs are promising vehicles for delivering microRNAs (miRs).
View Article and Find Full Text PDFExtracellular vesicles (EVs) serve as cell-to-cell and inter-organ communicators by conveying proteins and nucleic acids with regulatory functions. Emerging evidence shows that gut microbial-released EVs play a pivotal role in the gut-brain axis, bidirectional communication, and crosstalk between the gut and the brain. Increasing pre-clinical and clinical evidence suggests that gut bacteria-released EVs are capable of eliciting distinct signaling to the brain with the ability to cross the blood-brain barrier, exerting regulatory function on brain cells such as neurons, astrocytes, and microglia, via their abundant and diversified protein and nucleic acid cargo.
View Article and Find Full Text PDFWe have previously demonstrated that endothelial progenitor cells (EPCs) provide beneficial effects on ischemic stroke by reducing oxidative stress, which could be through EPCs-released exosomes (EPC-EXs). EXs are emerging as a bioagent for mediating cell-cell communications via their carried microRNAs (miR). miR-210 is shown to provide a neuroprotection effect against ischemic stroke.
View Article and Find Full Text PDFBackground: Hyperglycemia contributes to cardiovascular complications in patients with type 2 diabetes. We confirmed that high glucose (HG) induces endothelial dysfunction and cerebral ischemic injury is enlarged in diabetic mice. Stem cell-released exosomes have been shown to protect the brain from ischemic stroke.
View Article and Find Full Text PDFWe have previously demonstrated that endothelial progenitor cell (EPC) derived exosomes (EPC-EXs) can protect endothelial cells (ECs) against hypoxia injury. Given that EX function varies upon the cellular status and EPC function is declined in hypertension, we speculate the function of EPC-EXs is altered in hypertension-ischemia conditions. Here, we studied the EPC-EX mediated communications of EPCs with ECs in hypertension-ischemia conditions.
View Article and Find Full Text PDFUltraviolet B (UVB) stimulates the generation of extracellular vesicles, which elicit systemic effects. Here, we studied whether UVB affects the release and microRNA (miR) content of keratinocyte exosomes (EXs) in diabetic conditions. In vitro, we examined the UVB effects on affecting EX release from keratinocyte HaCaT cells (HaCaT-EX) pretreated with high glucose.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2021
Exosomes (EXs), a type of extracellular vesicles, are secreted from virtually all types of cells. EXs serve as cell-to-cell communicators by conveying proteins and nucleic acids with regulatory functions. Increasing evidence shows that EXs are implicated in the pathogenesis of central nervous system (CNS) diseases.
View Article and Find Full Text PDFNeuromolecular Med
June 2022
Adipose tissue is recognized as the largest endocrine organ by releasing secretory factors to exert systemic function on the brain. Exosomes are one type of extracellular vesicles that transport bioactive molecules between cells and organs. The cargo delivered by exosomes can alter a wide range of cellular responses in recipient cells and play an important pathophysiological role in human diseases.
View Article and Find Full Text PDFA complete carcinogen, ultraviolet B (UVB) radiation (290-320 nm), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator platelet-activating factor (PAF). A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects.
View Article and Find Full Text PDFPerivascular adipose tissue (PVAT), a type of adipose tissue that surrounds the blood vessels, has been considered an active component of the blood vessel walls and involved in vascular homeostasis. Recent evidence shows that increased inflammation and oxidative stress in PVAT contribute to endothelial dysfunction in type 2 diabetes (T2D). Exercise is an important nonpharmacological approach for vascular diseases.
View Article and Find Full Text PDFBackground: We have previously verified the beneficial effects of exosomes from endothelial progenitor cells (EPC-EXs) in ischemic stroke. However, the effects of EPC-EXs in hemorrhagic stroke have not been investigated. Additionally, miR-137 is reported to regulate ferroptosis and to be involved in the neuroprotection against ischemic stroke.
View Article and Find Full Text PDFAims: We previously showed that the protective effects of endothelial progenitor cells (EPCs)-released exosomes (EPC-EXs) on endothelium in diabetes. However, whether EPC-EXs are protective in diabetic ischemic stroke is unknown. Here, we investigated the effects of EPC-EXs on diabetic stroke mice and tested whether miR-126 enriched EPC-EXs (EPC-EXs ) have enhanced efficacy.
View Article and Find Full Text PDFBackground: The increased bone marrow angiogenesis is involved in the progression of multiple myeloma (MM) with the underlying mechanism poorly understood. Cancer-released exosomes could play an important role in the pathological angiogenesis through exosomal microRNAs (miRs) delivery. It is reported that miR-29b played an important role in regulating the tumor angiogenesis.
View Article and Find Full Text PDFBackgrounds/aims: Mesenchymal stromal cell-derived exosomes (MSC-EXs) could exert protective effects on recipient cells by transferring the contained microRNAs (miRs), and miR-132-3p is one of angiogenic miRs. However, whether the combination of MSC-EXs and miR-132-3p has better effects in ischemic cerebrovascular disease remains unknown.
Methods: Mouse MSCs transfected with scrambler control or miR-132-3p mimics were used to generate MSC-EXs and miR-132-3p-overexpressed MSC-EXs (MSC-EXs).
Thermal burn injuries are an important environmental stressor that can result in considerable morbidity and mortality. The exact mechanism by which an environmental stimulus to skin results in local and systemic effects is an area of active research. One potential mechanism to allow skin keratinocytes to disperse bioactive substances is via microvesicle particles, which are subcellular bodies released directly from cellular membranes.
View Article and Find Full Text PDFSubarachnoid hemorrhage (SAH) is a serious cerebrovascular disease with high mortality, and the mean age at morbidity is younger than in other types of stroke. Early brain injury (EBI) plays a key role in the poor prognoses of SAH. In EBI, multiple forms of cell death have been identified and well studied; however, the role of ferroptosis has not been elucidated.
View Article and Find Full Text PDFTransl Stroke Res
October 2020
The role of miR-503 in brain endothelium and ischemic stroke (IS) remains unclear. We aimed to study the relationship between plasma miR-503 and the onset time, severity, subtypes, and von Willebrand Factor (vWF) level in IS patients and to investigate the roles and underlying mechanisms of miR-503 in middle cerebral artery occlusion (MCAO) mice and cultured cerebral vascular endothelial cells (ECs). In MCAO mice, the effects of plasma from acute severe IS patients (ASS) with or without miR-503 antagomir on brain and ECs damage were determined.
View Article and Find Full Text PDFAngiotensin-converting enzyme 2 (ACE2) is an emerging cardiovascular protective target that mediates the metabolism of angiotensin (Ang) II into Ang (1-7). Our group has demonstrated that ACE2 overexpression enhances the function of endothelial progenitor cells (EPCs). Here, we investigated whether ACE2-primed EPCs (ACE2-EPCs) can protect cerebral microvascular endothelial cells (ECs) against injury and dysfunction in an model, with focusing on their exosomal and cytokine paracrine effects on endothelial mitochondria.
View Article and Find Full Text PDFAneurysmal subarachnoid hemorrhage (aSAH) is a subtype of hemorrhagic stroke with significant morbidity and mortality. Aneurysmal bleeding causes elevated intracranial pressure, decreased cerebral blood flow, global cerebral ischemia, brain edema, blood component extravasation, and accumulation of breakdown products. These post-SAH injuries can disrupt the integrity and function of the blood-brain barrier (BBB), and brain tissues are directly exposed to the neurotoxic blood contents and immune cells, which leads to secondary brain injuries including inflammation and oxidative stress, and other cascades.
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) was reported to regulate cell autophagy and outcomes of several neurological diseases. Mitochondria, which serve as critical organelles in neurons. are also involved in the pathology of neurological diseases.
View Article and Find Full Text PDFEndothelial cells (ECs) released microvesicles (EMVs) could modulate the functions of target cells by transferring their microRNAs (miRs). We have reported that miR-125a-5p protected EC function. In this study, we determined whether EMVs provided beneficial effects on ECs by transferring miR-125a-5p.
View Article and Find Full Text PDFMed Sci Sports Exerc
October 2018
Purpose: Exercise has cardiovascular benefits which might be related to endothelial progenitor cells (EPC). Meanwhile, there is evidence suggesting that EPC-derived exosomes (EPC-EX) promote vascular repair and angiogenesis through their carried microRNA (miR)-126. In this study, we investigated whether exercise could increase the levels of circulating EPC-EX and their miR-126 cargo, and by which promote the protective function of EPC-EX on endothelial cells (EC).
View Article and Find Full Text PDF