Publications by authors named "Jhenyi Wu"

[4]Rotaxanes featuring three axles threaded through a single ring have been prepared through active metal template synthesis. Nickel-catalyzed sp(3)-sp(3) homocouplings of alkyl bromide "half-threads" through 37- and 38-membered 2,2':6',2″-terpyridyl macrocycles generate triply threaded [4]rotaxanes in up to 11% yield. An analogous 39-membered macrocycle produced no rotaxane products under similar conditions.

View Article and Find Full Text PDF

A new class of near-infrared (NIR)-absorptive (>900 nm) photosensitizer based on a phenothiazinium scaffold is reported. The stable solid compound, o-DAP, the oxidative form of 3,7-bis(4-methylaminophenyl)-10H-phenothiazine, can generate reactive oxygen species (ROS, singlet oxygen and superoxide) under appropriate irradiation conditions. After biologically evaluating the intracellular uptake, localization, and phototoxicity of this compound, it was concluded that o-DAP is photostable and a potential selective photodynamic therapy (PDT) agent under either NIR or white light irradiation because its photodamage is more efficient in cancer cells than in normal cells and is without significant dark toxicity.

View Article and Find Full Text PDF

We report that a 2,2':6',2″-terpyridylmacrocycle-Ni complex can efficiently mediate the threading of two alkyl chains with bulky end groups in an active metal template sp(3)-carbon-to-sp(3)-carbon homocoupling reaction, resulting in a rare example of a doubly threaded [3]rotaxane in up to 51% yield. The unusual architecture is confirmed by X-ray crystallography (the first time that a one-ring-two-thread [3]rotaxane has been characterized in the solid state) and is found to be stable with respect to dethreading despite the large ring size of the macrocycle. Through such active template reactions, in principle, a macrocycle should be able to assemble as many axles in its cavity as the size of the ring and the stoppers will allow.

View Article and Find Full Text PDF

The synthesis of [2]catenanes by single macrocyclization and double macrocyclization strategies using Cu(I) ions to catalyze covalent bond formation while simultaneously acting as the template for the mechanically interlocked structure is reported. These "active metal template" strategies employ appropriately functionalized pyridine ether or bipyridine ligands and either the CuAAC "click" reaction of azides with terminal alkynes or the Cu(I)-mediated Cadiot-Chodkiewicz heterocoupling of an alkyne halide with a terminal alkyne. Using one macrocyclic and one acyclic building block, heterocircuit (the rings are constitutionally different) [2]catenanes are produced via the single macrocyclization route in up to 53% yield by optimizing the reaction conditions and relative stoichiometry of the starting materials.

View Article and Find Full Text PDF