Publications by authors named "Jheng-Yi Li"

Silicon (Si), the dominant semiconductor in microelectronics yet lacking optoelectronic functionalities in UV regions, has been researched extensively to make revolutionary changes. In this study, the inherent drawback of Si on optoelectronic functionalities in UV regions is potentially overcome through heterostructure coupling of delaminated p-type MnPS, having bulk, multiple-layer, and few-layer features, with n-type Si. By artificially mimicking the architectures of shrubs with unique UV shading phenomena, the revolutionary multiple-layer MnPS structures with staggered stacking configurations trigger outstanding UV photosensing performances, displaying an average EQE value of 1.

View Article and Find Full Text PDF

Rapid, reliable, and sensitive colorimetric detection has been regarded as a highly potential technique for visually monitoring the cation ions. Yet, insight into detection kinetics and quantitative analysis for colorimetric sensing of sodium ions has rarely been revealed. Herein, in-depth kinetic investigations of colorimetric detection using surface-modified Au-nanoparticle (AuNP) probes were performed for interpreting the correlation of salt concentration, reaction duration, and light absorbance.

View Article and Find Full Text PDF

Metal-assisted chemical etching (MaCE) has been widely employed for the fabrication of regular silicon (Si) nanowire arrays. These features were originated from the directional etching of Si preferentially along <100> orientations through the catalytic assistance of metals, which could be gold, silver, platinum or palladium. In this study, the dramatic modulation of etching profiles toward pyramidal architectures was undertaken by utilizing copper as catalysts through a facile one-step etching process, which paved the exceptional way on the texturization of Si for advanced photovoltaic applications.

View Article and Find Full Text PDF

Facile, effective and reliable etching technique for the formation of uniform silicon (Si) nanowire arrays were realized through the incorporation of back substrates with metal-assisted chemical etching (MaCE). In comparison with conventional MaCE process, a dramatic increase of etching rates upon MaCE process could be found by employing the conductive back substrates on p-type Si, while additionally prevented the creation of nanopores from catalytic etching reaction. Examinations on the involving etching kinetics, morphologies, wetting behaviors and surface structures were performed that validated the role of back substrates upon MaCE process.

View Article and Find Full Text PDF