Publications by authors named "Jeyson Hermosilla"

Dental implant success is threatened by peri-implantitis, an inflammation leading to implant failure. Conventional treatments struggle with the intricate microbial and host factors involved. Antibacterial membranes, acting as barriers and delivering antimicrobials, may offer a promising solution.

View Article and Find Full Text PDF

The placement of a polymeric electrospun scaffold is among the most promising strategies to improve nerve regeneration after critical neurotmesis. It is of great interest to investigate the effect of these structures on Schwann cells (SCs), as these cells lead nerve regeneration and functional recovery. The aim of this study was to assess SC viability and morphology when cultured on polyhydroxybutyrate (PHB) electrospun scaffolds with varied microfiber thicknesses and pore sizes.

View Article and Find Full Text PDF

Peri-implantitis is a serious condition affecting dental implants that can lead to implant failure and loss of osteointegration if is not diagnosed and treated promptly. Therefore, the development of new materials and approaches to treat this condition is of great interest. In this study, we aimed to develop an electrospun scaffold composed of polycaprolactone (PCL) microfibers loaded with cholecalciferol (Col), which has been shown to promote bone tissue regeneration.

View Article and Find Full Text PDF

Burns are a major threat to public health and the economy due to their costly and laborious treatment and high susceptibility to infection. Efforts have been made recently to investigate natural bioactive compounds with potential use in wound healing. The importance lies in the capacities that these compounds could possess both in infection control by common and resistant microorganisms, as well as in the regeneration of the affected tissues, having in both cases low adverse effects.

View Article and Find Full Text PDF
Article Synopsis
  • The work developed an electrospinning method to create both micro- and nanofibers in a single scaffold using biodegradable polymers (PHB) and proteins (gelatin), aimed at mimicking the extracellular matrix for diabetic wound healing.
  • Optimal electrospinning conditions were found using specific concentrations and voltages, resulting in successful production of microfibers (1.25 μm) and nanofibers (0.20 μm).
  • In vivo tests on diabetic rats showed that scaffolds containing gelatin led to faster wound healing, with Ge-PHB scaffolds exhibiting improved tissue regeneration characterized by more hair follicles and sweat glands compared to control wounds.
View Article and Find Full Text PDF

Piperine (PIP) is an alkaloid which is potent as a therapeutic agent. However, its applications are restricted by its poor water solubility. Nanosponges (NS) derived from polymers are versatile carriers for poor water-soluble substances.

View Article and Find Full Text PDF

Coaxial electrospinning was used to develop gallic acid (GA) loaded poly(ethylene oxide)/zein nanofibers in order to improve its chemopreventive action on human gallbladder cancer cells. Using a Plackett-Burman design, the effects of poly(ethylene oxide) and zein concentration and applied voltage on the diameter and morphology index of nanofibers were investigated. Coaxial nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).

View Article and Find Full Text PDF

Nano- and microfibers obtained by electrospinning have attracted great attention due to its versatility and potential for applications in diverse technological fields. Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by microorganisms such as the bacterium Burkholderia xenovorans LB400. In particular, LB400 cells are capable to synthesize poly(3-hydroxybutyrate) (PHB) from glucose.

View Article and Find Full Text PDF