Publications by authors named "Jeyaprakashnarayanan Seenisamy"

Proteasomes are broadly expressed key components of the ubiquitin-dependent protein degradation pathway containing catalytically active subunits (β1, β2, and β5). LMP7 (β5i) is a subunit of the immunoproteasome, an inducible isoform that is predominantly expressed in hematopoietic cells. Clinically effective pan-proteasome inhibitors for the treatment of multiple myeloma (MM) nonselectively target LMP7 and other subunits of the constitutive proteasome and immunoproteasome with comparable potency, which can limit the therapeutic applicability of these drugs.

View Article and Find Full Text PDF

The solvent-dependent photophysics of two 4-amino-substituted 1,8-naphthalene imides () were studied using fluorescence spectroscopy and laser flash photolysis. The compounds were functionalized with water-soluble 2,2'(ethylenedioxy) diethylamine groups, yielding a monomer () and a dimer (). The radiative and nonradiative singlet-state deactivation processes of and were quantified in 10 solvents and at different pH values.

View Article and Find Full Text PDF

The recently disclosed next generation of reversible, selective, and potent MetAP-2 inhibitors introduced a cyclic tartronic diamide scaffold. However, the lead compound suffered from enterohepatic circulation, preventing further development. Nevertheless, served as a starting point for further optimization.

View Article and Find Full Text PDF

The P2X7 receptor (P2X7R) plays an important role in diverse conditions associated with tissue damage and inflammation, suggesting that the human P2X7R (hP2X7R) is an attractive therapeutic target. In the present study, the synthesis and structure-activity relationship (SAR) of a novel series of quinoline derivatives as P2X7R antagonists are described herein. These compounds exhibited mechanistic activity (YO PRO) in an engineered HEK293 expressing hP2X7R as well as a functional response (IL-1β) in human THP-1 (hTHP-1) cellular assays.

View Article and Find Full Text PDF

Co- and post-translational processing are crucial maturation steps to generate functional proteins. MetAP-2 plays an important role in this process, and inhibition of its proteolytic activity has been shown to be important for angiogenesis and tumor growth, suggesting that small-molecule inhibitors of MetAP-2 may be promising options for the treatment of cancer. This work describes the discovery and structure-based hit optimization of a novel MetAP-2 inhibitory scaffold.

View Article and Find Full Text PDF

Focal adhesion kinase (FAK) is considered as an attractive target for oncology, and small-molecule inhibitors are reported to be in clinical testing. In a surface plasmon resonance (SPR)-mediated fragment screening campaign, we discovered bicyclic scaffolds like 1H-pyrazolo[3,4-d]pyrimidines binding to the hinge region of FAK. By an accelerated knowledge-based fragment growing approach, essential pharmacophores were added.

View Article and Find Full Text PDF

New phenoxyacetic acid antagonists of CRTH2 are described. Following the discovery of a hit compound by a focused screening, high protein binding was identified as its main weakness. Optimization aimed at reducing serum protein binding led to the identification of several compounds that showed not only excellent affinities for the receptor (41 compounds with K(i) < 10 nM) but also excellent potencies in a human whole blood assay (IC(50) < 100 nM; PGD2-induced eosinophil shape change).

View Article and Find Full Text PDF

The human telomeric sequence d[T(2)AG(3)](4) has been demonstrated to form different types of G-quadruplex structures, depending upon the incubation conditions. For example, in sodium (Na(+)), a basket-type G-quadruplex structure is formed. In this investigation, using circular dichroism (CD), biosensor-surface plasmon resonance (SPR), and a polymerase stop assay, we have examined how the addition of different G-quadruplex-binding ligands affects the conformation of the telomeric G-quadruplex found in solution.

View Article and Find Full Text PDF

Cationic porphyrins are known to bind to and stabilize different types of G-quadruplexes. Recent studies have shown the biological relevance of the intramolecular parallel G-quadruplex as a transcriptional silencer in the c-MYC promoter. TMPyP4 also binds to this G-quadruplex and most likely converts it to a mixed parallel/antiparallel G-quadruplex with two external lateral loops and one internal propeller loop, suppressing c-MYC transcriptional activation.

View Article and Find Full Text PDF

The nuclease hypersensitivity element III1 (NHE III1) upstream of the P1 and P2 promoters of c-MYC controls 80-90% of the transcriptional activity of this gene. The purine-rich strand in this region can form a G-quadruplex structure that is a critical part of the silencer element for this promoter. We have demonstrated that this G-quadruplex structure can form a mixture of four biologically relevant parallel-loop isomers, which upon interaction with the cationic porphyrin TMPyP4 are converted to mixed parallel/antiparallel G-quadruplex structures.

View Article and Find Full Text PDF