The extensive hydrolysis of tetravalent actinides leads to polynuclear formations through oxygen bridging facilitating the formation of colloids as end products. The pH, ionic strength has phenomenal effects on Thorium colloids formation. The quantitative estimation of colloids facilitates the fraction of soluble fraction into ionic, polymeric and colloidal forms of thorium.
View Article and Find Full Text PDFDetermination of concentrations of micronutrients in plant samples is important in order to assess the growth and quality of plants. An ion chromatography (IC) method was developed for the simultaneous determination of B, Cl and Mo (micronutrients present in their anionic form in aqueous samples) using a gradient elution with d-mannitol and NaOH. Despite their different chemical nature, these elements could be separated from the matrix by employing pyrohydrolysis.
View Article and Find Full Text PDFPyrohydrolysis is a well-established separation method, and it is being used as a sample preparation method for several materials for further determination of non-metals such as halogens, boron, and sulfur. Analytes are retained in a diluted solution that is suitable for carrying out analysis by several determination techniques and minimizing the use of concentrated reagents. Pyrohydrolysis separation of metals has not been reported yet.
View Article and Find Full Text PDFA method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H3BO3 and B4C. The optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U3O8, which prevents the sample from flare up, and also accelerates the extraction of boron.
View Article and Find Full Text PDFJ Sep Sci
March 2011