Due to their high catalytic activity, stability, and economic benefits, Pt-based multi-element alloyed nanoparticles (NPs) are considered promising electrodes for oxygen reduction reactions. However, a synthesis method capable of controlling the reduction reaction of elements with different redox potentials to synthesize multimetallic alloy NPs is yet to be developed. In this study, monodisperse NiPtPd alloy NPs with varying compositions were synthesized using 1-heptanol as a reducing solvent.
View Article and Find Full Text PDFAtomic arrangement in Cu-Pd alloy nanoparticles (NPs) has been reported to influence the catalytic activity, but they have yet to be studied in detail. Unlike previous studies, where the B2 structure Cu-Pd NPs are obtained by heat treating the A1 structure, this study reports the one-pot direct syntheses of A1- and B2-structured Cu-Pd NPs using an alcohol reduction method. The alcohol reduction technique facilitates the kinetic control of the reduction reaction by selecting the appropriate alcohol type and complexing agent to delay the reduction of easily reducible metallic elements to realize control over the reduction kinetics for coreduction.
View Article and Find Full Text PDFPolymethyl methacrylate (PMMA) bone cement is widely used to relieve pain caused by metastatic bone tumors. We previously found that PMMA bone cement containing 15 mass% or more of TiO showed good apatite-forming ability, and 25 mass% or more of FeO generated sufficient heat for hyperthermia under an alternating current (AC) magnetic field. In this study, the cytocompatibility of PMMA bone cement with FeO:TiO weight ratios of 25:15 (F25T15-3/2-42) and 30:15 (F30T15-3/2-42) was evaluated using osteoblastic cells (MC3T3-E1).
View Article and Find Full Text PDFThe chemical synthesis of alloy nanoparticles requires adequate conditions to enable co-reduction instead of separate reduction of the two metal cations. The mechanism of formation of bimetallic cobalt-ruthenium nanoalloys by reducing metal salts in an alcohol medium was explored to draw general rules to extrapolate to other systems. The relative kinetics of the reduction of both metal cations were studied by UV-visible and Quick-X-ray absorption spectroscopies as well as H evolution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2023
Magnetic iron oxide mesocrystals have been reported to exhibit collective magnetic properties and consequently enhanced heating capabilities under alternating magnetic fields. However, there is no universal mechanism to fully explain the formation pathway that determines the particle diameter, crystal size, and shape of these mesocrystals and their evolution along with the reaction. In this work, we have analyzed the formation of cubic magnetic iron oxide mesocrystals by thermal decomposition in organic media.
View Article and Find Full Text PDFCo-Ni alloy nanoparticles, a potential candidate for microwave absorption material, were successfully synthesized by tuning the reduction timing of Co and Ni ions by introducing oleylamine as a complexing agent and 1-heptanol as a reducing solvent. The formation mechanism elucidated using time-resolved sampling and in situ X-ray absorption spectroscopy (XAS) and ultraviolet-visible (UV-vis) spectrophotometry measurements suggested that the delay in the reduction of Co ions via complexation with oleylamine facilitated the co-reduction of Co with Ni ions and led to the formation of Co-Ni alloys. The successful synthesis of Co-Ni alloys experimentally confirmed the differences in magnetic properties between alloy and core-shell structured CoNi particles.
View Article and Find Full Text PDFElucidation of reaction mechanisms in forming nanostructures is relevant to obtain robust and affordable protocols that can lead to materials with enhanced properties and good reproducibility. Here, the formation of magnetic iron oxide monocrystalline nanoflowers in polyol solvents using N-methyldiethanolamine (NMDEA) as co-solvent has been shown to occur through a non-classical crystallization pathway. This pathway involves intermediate mesocrystals that, in addition, can be transformed into large single colloidal nanocrystals.
View Article and Find Full Text PDFBimetallic nanomaterials have attracted much attention from various fields such as catalysis, optics, magnetism, and so forth. The functionality of such particles is influenced very much by the intermetallic interactions than their individual contribution. However, compared with the synthesis of monometallic nanoparticles, the reaction parameters that need to be controlled for tuning the size, shape, composition, and crystal structure of bimetallic nanoparticles becomes challenging.
View Article and Find Full Text PDFRecently, the development of bimetallic nanoparticles with functional properties has been attempted extensively but with limited control over their morphological and structural properties. The reason was the inability to control the kinetics of the reduction reaction in most liquid-phase syntheses. However, the alcohol reduction technique has demonstrated the possibility of controlling the reduction reaction and facilitating the incorporation of other phenomena such as diffusion, etching, and galvanic replacement during nanostructure synthesis.
View Article and Find Full Text PDFDevelopment of a technology for the synthesis of monometallic or multimetallic nanoparticles is exceptionally vital for the preparation of novel magnetic, optical. and catalytic functional materials. In this context, the polyol process is a safe and scalable method for preparation of metal nanoparticles with controlled sizes and shapes in large scales.
View Article and Find Full Text PDFHyperthermia treatment using appropriate magnetic materials in an alternating magnetic field to generate heat has been recently proposed as a low-invasive cancer treatment method. Magnetite (FeO) nanoparticles are expected to be an appropriate type of magnetic thermal seed for this purpose, and the addition of organic substances during the synthesis process has been studied for controlling particle size and improving biological functions. However, the role of the properties of the organic polymer chosen as the modifier in the physical properties of the thermal seed has not yet been comprehensively revealed.
View Article and Find Full Text PDFIdeal interaction-free magnetite nanoparticles were prepared, and their magnetic properties were measured to clarify the true nature of magnetic anisotropy of individual magnetite nanoparticles at the nanoscale and to analyze the shape, surface, and crystalline anisotropy contributions. Spherical (17.7 nm), cubic (10.
View Article and Find Full Text PDFA new stimulus-responsive drug delivery system using FeO nanoparticles coated with molecularly imprinted polymer (MIP) is reported. Magnetic thermal seeds (MTS) with their size controlled between 10 and 20 nm that could generate heat under an alternate current (AC) magnetic field were modified with a thermal-responsive MIP by grafting polymerization for effective release of an anticancer drug, methotrexate (MTX). The MIP-coated MTS showed the superparamagnetic property as well as the selective adsorption ability toward MTX, and 80% of MXT adsorbed on the MIP-coated MTS was stimulus released at 60 °C by cleaving hydrogen bonding in the recognition sites.
View Article and Find Full Text PDFCopper (Cu) nanowires (NWs) were synthesized by the reduction of Cu-chloride complexes using ascorbic acid (AA) as a mild reducing agent, polyvinylpyrrolidone (PVP) as a capping agent, and NaCl as an additive under atmospheric conditions at 80 °C. Surface analyses revealed that both Cl ions and PVP were required for the synthesis of Cu NWs. Together, the Cl ions and PVP capped the Cu (1 0 0) side faces, leading to anisotropic growth of Cu NWs along the [1 1 0] direction.
View Article and Find Full Text PDFResearch to improve the dimensional properties of silver nanowires (Ag NWs) for transparent conductive film (TCF) applications are being carried out intensively. However, the protocol for the designed synthesis of high-quality Ag NWs is yet to be developed due to the inadequacy of knowledge on the role of parameters. Here, we attempt to elucidate the role played by the parameters and propose a monoalcohol-copolymer based system for the designed synthesis of Ag NWs superior in quality to the one synthesized using conventional ethylene glycol (EG)-polyvinylpyrrolidone (PVP) system.
View Article and Find Full Text PDFMagnetic responses of superparamagnetic nanoparticles to high-frequency AC magnetic fields with sufficiently large amplitudes are numerically simulated to exactly clarify the phenomena occurring in magnetic particle imaging. When the magnetic anisotropy energy inevitable in actual nanoparticles is taken into account in considering the magnetic potential, larger nanoparticles exhibit a delayed response to alternations of the magnetic fields. This kind of delay is rather remarkable in the lower-amplitude range of the field, where the assistance by the Zeeman energy to thermally activated magnetization reversal is insufficient.
View Article and Find Full Text PDFTargeted hyperthermia treatment using magnetic nanoparticles is a promising cancer therapy. However, the mechanisms of heat dissipation in the large alternating magnetic field used during such treatment have not been clarified. In this study, we numerically compared the magnetic loss in rotatable nanoparticles in aqueous media with that of non-rotatable nanoparticles anchored to localised structures.
View Article and Find Full Text PDFIron oxide nanoparticles of reduced oxidation state, mainly in the form of magnetite, have been synthesized utilizing a new continuous, gas-phase, nonpremixed flame method using hydrocarbon fuels. This method takes advantage of the characteristics of the inverse flame, which is produced by injection of oxidizer into a surrounding flow of fuel. Unlike traditional flame methods, this configuration allows for the iron particle formation to be maintained in a more reducing environment.
View Article and Find Full Text PDFNano-sized particles have received much attention in view of their varied application in a wide range of fields. For example, magnetite (Fe(3)O(4)) nanoparticles have been investigated for various medical applications. In this study, we visualized the distribution of administered magnetic nanoparticles in mice using both X-ray scanning analytical microscopy (XSAM) and magnetic resonance imaging (MRI).
View Article and Find Full Text PDFWe produced large binder-free multi-walled carbon nanotube (MWNT) blocks from fluorinated MWNTs using thermal heating and a compressing method in vacuo. This technique resulted in the formation of covalent MWNT networks generated by the introduction of sp(3)-hybridized carbon atoms that cross-link between nanotubes upon de-fluorination. The resulting carbon nanotube blocks are lighter than graphite, can be machined and polished, and possess average bending strengths of 102.
View Article and Find Full Text PDFMulti-walled carbon nanotube (MWCNT) films were prepared by employing a condensation reaction utilizing 1,3-dicyclohexylcarbodiimide (DCC) to cross-link each MWCNT with carboxylic acid and hydroxyl groups. Morphological changes in the resultant MWCNT films were monitored using scanning electron microscopy and showed that the MWCNTs were randomly intertwined in the films. The prepared MWCNT films were 17 mm in diameter and 20 microm in thickness, and the apparent density was 0.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) are single- or multi-cylindrical graphene structures that possess diameters of a few nanometers, while the length can be up to a few micrometers. These could have unusual toxicological properties, in that they share intermediate morphological characteristics of both fibers and nanoparticles. To date, no detailed study has been carried out to determine the effect of length on CNT cytotoxicity.
View Article and Find Full Text PDFMol Biosyst
July 2005
Water-soluble H-CNFs modified with a carboxyl group possessed the ability to induce TNF-alpha, whereas CHAPS-treated H-CNFs possessed significantly greater activity and were also found to activate NF-kappaB reporter activity, to a significantly greater level than H-CNFs; furthermore the functional group modified or coated on the surface of H-CNFs was a significant cytotoxic factor that affected cell activation.
View Article and Find Full Text PDFNanoparticles under a few nanometres in size have structures and material functions that differ from the bulk because of their distinct geometrical shapes and strong quantum confinement. These qualities could lead to unique device applications. Our mass spectral analysis of CdSe nanoparticles reveals that (CdSe)(33) and (CdSe)(34) are extremely stable: with a simple solution method, they grow in preference to any other chemical compositions to produce macroscopic quantities.
View Article and Find Full Text PDF