Publications by authors named "Jewel Imani"

Novel therapeutics are urgently needed to prevent opportunistic infections in immunocompromised individuals undergoing cancer treatments or other immune-suppressive therapies. Trained immunity is a promising strategy to reduce this burden of disease. We previously demonstrated that mesenchymal stromal cells (MSCs) preconditioned with a class A CpG oligodeoxynucleotide (CpG-ODN), a Toll-like receptor 9 (TLR9) agonist, can augment emergency granulopoiesis in a murine model of neutropenic sepsis.

View Article and Find Full Text PDF

Objective: Lymphangioleiomyomatosis (LAM) is a rare, destructive disease of the lungs with a limited number of determinants of disease activity, which are a critical need for clinical trials. FGF23 has been implicated in several chronic pulmonary diseases. We aimed to determine the association between serum FGF23 levels and pulmonary function in a cohort of patients with LAM.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease of unknown etiology. The accumulation of macrophages is associated with disease pathogenesis. The unfolded protein response (UPR) has been linked to macrophage activation in pulmonary fibrosis.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a multisystem disease occurring in women of child-bearing age manifested by uncontrolled proliferation of smooth muscle-like "LAM" cells in the lungs. LAM cells bear loss-of-function mutations in tuberous sclerosis complex (TSC) genes TSC1 and/or TSC2, causing hyperactivation of the proliferation promoting mammalian/mechanistic target of Rapamycin complex 1 pathway. Additionally, LAM-specific active renin-angiotensin system (RAS) has been identified in LAM nodules, suggesting this system potentially contributes to neoplastic properties of LAM cells; however, the role of this renin-angiotensin signaling is unclear.

View Article and Find Full Text PDF

Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by improper biogenesis of lysosome-related organelles (LROs). Lung fibrosis is the leading cause of death among adults with HPS-1 and HPS-4 genetic types, which are associated with defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3), a guanine exchange factor (GEF) for a small GTPase, Rab32. LROs are not ubiquitously present in all cell types, and specific cells utilize LROs to accomplish dedicated functions.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare progressive disease, characterized by mutations in the tuberous sclerosis complex genes ( or ) and hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1). Here, we report that E26 transformation-specific (ETS) variant transcription factor 2 (ETV2) is a critical regulator of -deficient cell survival. ETV2 nuclear localization in -deficient cells is mTORC1-independent and is enhanced by spleen tyrosine kinase (Syk) inhibition.

View Article and Find Full Text PDF

Extensive inflammation causes epithelial cell hyperplasia in the airways and Bcl-2-interacting killer (Bik) reduces epithelial cell and mucous cell hyperplasia without affecting resting cells to restore homeostasis. These observations suggest that Bik induces apoptosis in a cell cycle-specific manner, but the mechanisms are not understood. Mice were exposed to an allergen for 3, 14, or 30 days and Bik expression was induced in airway epithelia of transgenic mice.

View Article and Find Full Text PDF

Lung allograft rejection results in the accumulation of low-molecular weight hyaluronic acid (LMW-HA), which further propagates inflammation and tissue injury. We have previously shown that therapeutic lymphangiogenesis in a murine model of lung allograft rejection reduced tissue LMW-HA and was associated with improved transplant outcomes. Herein, we investigated the use of 4-Methylumbelliferone (4MU), a known inhibitor of HA synthesis, to alleviate acute allograft rejection in a murine model of lung transplantation.

View Article and Find Full Text PDF

Sepsis is a life-threatening process related to a dysregulated host response to an underlying infection, which results in organ dysfunction and poor outcomes. Therapeutic strategies using mesenchymal stromal cells (MSCs) are under investigation for sepsis, with efforts to improve cellular utility. Syndecan (SDC) proteins are transmembrane proteoglycans involved with cellular signaling events including tissue repair and modulating inflammation.

View Article and Find Full Text PDF

Background: Therapeutic lymphangiogenesis in an orthotopic lung transplant model has been shown to improve acute allograft rejection that is mediated at least in part through hyaluronan drainage. Lymphatic vessel endothelial hyaluronan receptor (LYVE-1) expressed on the surface of lymphatic endothelial cells plays important roles in hyaluronan uptake. The impact of current immunosuppressive therapies on lung lymphatic endothelial cells is largely unknown.

View Article and Find Full Text PDF

Hyaluronan (HA) is associated with innate immune response activation and may be a marker of allograft dysfunction in lung transplant recipients. This was a prospective, single center study comparing levels of bronchioalveolar lavage (BAL) and serum HA and the HA immobilizer LYVE-1 in lung transplant recipients with and without acute cellular rejection (ACR). Chronic lung allograft dysfunction (CLAD)-free survival was also evaluated based on HA and LYVE-1 levels.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that IL-6 plays a significant role in activating macrophages towards a profibrotic state, but the mechanisms behind their increased secretion are not fully understood.
  • The study explored how IL-6 affects endoplasmic reticulum (ER) expansion and macrophage activation using various experimental methods, focusing on the IRE1-XBP1 pathway.
  • Findings suggest that adding IL-6 enhances ER and mitochondrial growth, promoting a profibrotic profile in macrophages, indicating that targeting IL-6 or the IRE1-XBP1 pathway could be useful in reducing this profibrotic capacity.
View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with an unknown cause. Two drugs, nintedanib and pirfenidone, have been shown to slow, but not stop, disease progression. Pulmonary hypertension (PH) is a frequent complication in IPF patients and is associated with poor prognosis.

View Article and Find Full Text PDF

Although recent evidence indicates that gp130 cytokines, Oncostatin M (OSM) and IL-6 are involved in alternative programming of macrophages, their role in lung fibrogenesis is poorly understood. Here, we investigated the effect of transient adenoviral overexpression of OSM or IL-6 in mice during bleomycin-induced lung fibrosis. Lung fibrosis and M2-like macrophage accumulation were assessed by immunohistochemistry, western blotting, gene expression and flow cytometry.

View Article and Find Full Text PDF