Publications by authors named "Jevtic Predrag"

The shape and size of the human cell nucleus is highly variable among cell types and tissues. Changes in nuclear morphology are associated with disease, including cancer, as well as with premature and normal aging. Despite the very fundamental nature of nuclear morphology, the cellular factors that determine nuclear shape and size are not well understood.

View Article and Find Full Text PDF

Eukaryotic cells possess hundreds of protein complexes that contain multiple subunits and must be formed at the correct time and place during development. Despite specific assembly pathways, cells frequently encounter complexes with missing or aberrant subunits that can disrupt important signaling events. Cells, therefore, employ several ubiquitin-dependent quality control pathways that can prevent, correct, or degrade flawed complexes.

View Article and Find Full Text PDF

Cryoprotection is of interest in many fields of research, necessitating a greater understanding of different cryoprotective agents. Antifreeze proteins have been identified that have the ability to confer cryoprotection in certain organisms. Antifreeze proteins are an evolutionary adaptation that contributes to the freeze resistance of certain fish, insects, bacteria and plants.

View Article and Find Full Text PDF

Induced protein degradation accomplishes elimination, rather than inhibition, of pathological proteins. Key to the success of this novel therapeutic modality is the modification of proteins with ubiquitin chains, which is brought about by molecular glues or bivalent compounds that induce proximity between the target protein and an E3 ligase. The human genome encodes ∼600 E3 ligases that differ widely in their structures, catalytic mechanisms, modes of regulation, and physiological roles.

View Article and Find Full Text PDF

Most quality control pathways target misfolded proteins to prevent toxic aggregation and neurodegeneration. Dimerization quality control further improves proteostasis by eliminating complexes of aberrant composition, but how it detects incorrect subunits remains unknown. Here we provide structural insight into target selection by SCF-FBXL17, a dimerization-quality-control E3 ligase that ubiquitylates and helps to degrade inactive heterodimers of BTB proteins while sparing functional homodimers.

View Article and Find Full Text PDF

How intracellular organelles acquire their characteristic sizes is a fundamental question in cell biology. Given stereotypical changes in nuclear size in cancer, it is important to understand the mechanisms that control nuclear size in human cells. Using a high-throughput imaging RNAi screen, we identify and mechanistically characterize ELYS, a nucleoporin required for post-mitotic nuclear pore complex (NPC) assembly, as a determinant of nuclear size in mammalian cells.

View Article and Find Full Text PDF

More than just a container for DNA, the nuclear envelope carries out a wide variety of critical and highly regulated cellular functions. One of these functions is nuclear import, and in this study we investigate how altering the levels of nuclear transport factors impacts developmental progression and organismal size. During early Xenopus laevis embryogenesis, the timing of a key developmental event, the midblastula transition (MBT), is sensitive to nuclear import factor levels.

View Article and Find Full Text PDF

Background: Nuclear size is a tightly regulated cellular feature. Mechanisms that regulate nuclear size and the functional significance of this regulation are largely unknown. Nuclear size and morphology are often altered in many diseases, such as cancer.

View Article and Find Full Text PDF

In many organisms, early embryonic development is characterized by a series of reductive cell divisions that result in rapid increases in cell number and concomitant decreases in cell size. Intracellular organelles, such as the nucleus and mitotic spindle, also become progressively smaller during this developmental window, but the molecular and mechanistic underpinnings of these scaling relationships are not fully understood. For the mitotic spindle, changes in cytoplasmic volume are sufficient to account for size scaling during early development in certain organisms.

View Article and Find Full Text PDF

During early Xenopus laevis embryogenesis both nuclear and cell volumes decrease with the nuclear-to-cytoplasmic (N/C) volume ratio reaching a maximum at the midblastula transition (MBT). At the MBT, embryonic transcription is upregulated and cell cycles lengthen. Early studies demonstrated a role for the DNA-to-cytoplasmic ratio in the control of MBT timing.

View Article and Find Full Text PDF

In this issue of Developmental Cell, Kyogoku and Kitajima (2017) investigate the effect of cytoplasmic volume on the fidelity of chromosome segregation during meiosis in mouse oocytes. The authors find that large cytoplasmic volume affects spindle pole morphology, chromosome alignment, and stringency of checkpoint signaling, resulting in error-prone chromosome segregation.

View Article and Find Full Text PDF

Striking size variations are prominent throughout biology, at the organismal, cellular, and subcellular levels. Important fundamental questions concern organelle size regulation and how organelle size is regulated relative to cell size, also known as scaling. Uncovering mechanisms of organelle size regulation will inform the functional significance of size as well as the implications of misregulated size, for instance in the case of nuclear enlargement in cancer.

View Article and Find Full Text PDF

Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer.

View Article and Find Full Text PDF

Altered nuclear size is associated with many cancers, and determining whether cancer-associated changes in nuclear size contribute to carcinogenesis necessitates an understanding of mechanisms of nuclear size regulation. Although nuclear import rates generally positively correlate with nuclear size, NTF2 levels negatively affect nuclear size, despite the role of NTF2 (also known as NUTF2) in nuclear recycling of the import factor Ran. We show that binding of Ran to NTF2 is required for NTF2 to inhibit nuclear expansion and import of large cargo molecules in Xenopus laevis egg and embryo extracts, consistent with our observation that NTF2 reduces the diameter of the nuclear pore complex (NPC) in a Ran-binding-dependent manner.

View Article and Find Full Text PDF

A fundamental question in cell biology concerns the regulation of organelle size. While nuclear size is exquisitely controlled in different cell types, inappropriate nuclear enlargement is used to diagnose and stage cancer. Clarifying the functional significance of nuclear size necessitates an understanding of the mechanisms and proteins that control nuclear size.

View Article and Find Full Text PDF

Early Xenopus laevis embryogenesis is a robust system for investigating mechanisms of developmental timing. After a series of rapid cell divisions with concomitant reductions in cell size, the first major developmental transition is the midblastula transition (MBT), when zygotic transcription begins and cell cycles elongate. Whereas the maintenance of a constant nuclear-to-cytoplasmic (N/C) volume ratio is a conserved cellular property, it has long been recognized that the N/C volume ratio changes dramatically during early Xenopus development.

View Article and Find Full Text PDF

Changes in nuclear size have long been used by cytopathologists as an important parameter to diagnose, stage, and prognose many cancers. Mechanisms underlying these changes and functional links between nuclear size and malignancy are largely unknown. Understanding mechanisms of nuclear size regulation and the physiological significance of proper nuclear size control will inform the interplay between altered nuclear size and oncogenesis.

View Article and Find Full Text PDF

The size and shape of the nucleus are tightly regulated, indicating the physiological significance of proper nuclear morphology, yet the mechanisms and functions of nuclear size and shape regulation remain poorly understood. Correlations between altered nuclear morphology and certain disease states have long been observed, most notably many cancers are diagnosed and staged based on graded increases in nuclear size. Here we review recent studies investigating the mechanisms regulating nuclear size and shape, how mitotic events influence nuclear morphology, and the role of nuclear size and shape in subnuclear chromatin organization and cancer progression.

View Article and Find Full Text PDF

Cell size varies greatly among different cell types and organisms, especially during early development when cell division is rapid with little overall growth. A fundamental question is how organelle size is regulated relative to cell size. The nucleus exhibits exquisite size scaling during development and between species, and nuclear size is often altered in cancer cells.

View Article and Find Full Text PDF