Salt stress is one of the environmental stresses that significantly reduces crop productivity and quality worldwide. Methods to overcome salt stress include developing salt-resistant crops by inserting various resistance genes or to diagnosing and responding to the effects of salt stress at an early stage. In this study, we investigate the effects of salinity stress on growth, photosynthetic efficiency, and metabolic changes in Brussels sprouts ( var.
View Article and Find Full Text PDFRoot-knot nematodes (RKN) cause significant damage to sweetpotato plants and cause significant losses in yield and quality. Reactive oxygen species (ROS) play an important role in plant defenses, with levels of ROS-detoxifying antioxidant enzymes tightly regulated during pathogen infection. In this study, ROS metabolism was examined in three RKN-resistant and three RKN-susceptible sweetpotato cultivars.
View Article and Find Full Text PDFSweetpotato ( [L.] Lam) is an economically important, nutrient- and pigment-rich root vegetable used as both food and feed. Root-knot nematode (RKN), , causes major yield losses in sweetpotato and other crops worldwide.
View Article and Find Full Text PDFA previous transcriptomic analysis of the roots of susceptible and resistant cultivars of sweetpotato (Ipomoea batatas) identified genes that were likely to contribute to protection against infection with the root-knot nematode Meloidogyne incognita. The current study examined the roles of peroxidase genes in sweetpotato defense responses during root-knot nematode infection, using the susceptible (cv. Yulmi) and resistant (cv.
View Article and Find Full Text PDFTranscriptome analysis was performed on the roots of susceptible and resistant sweetpotato cultivars infected with the major root-knot nematode species Meloidogyne incognita. In addition, we identified a transcription factor-mediated defense signaling pathway that might function in sweetpotato-nematode interactions. Root-knot nematodes (RKNs, Meloidogyne spp.
View Article and Find Full Text PDFWe have previously reported that transgenic sweet potato (Ipomoea batatas) plants overexpressing both CuZn superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) under the control of a stress-inducible SWPA2 promoter in chloroplasts (referred to as SSA plants) showed increased resistance to methyl viologen-mediated oxidative stress and chilling. To investigate whether SSA plants show enhanced tolerance to air pollutants, they were exposed to 500ppb of sulfur dioxide (SO2). SO2 caused visible damage to the leaves of sweet potato, but damage in the leaves of non-transgenic (NT) plants was more severe than in those of SSA plants.
View Article and Find Full Text PDFFibrous roots of sweetpotato (Ipomoea batatas (L.) Lam.) usually develop into both pencil and storage roots.
View Article and Find Full Text PDFIndeterminate domain (IDD) genes are a family of plant transcriptional regulators that function in the control of development and metabolism during growth. Here, the function of Oryza sativa indeterminate domain 10 (OsIDD10) has been explored in rice plants. Compared with wild-type roots, idd10 mutant roots are hypersensitive to exogenous ammonium.
View Article and Find Full Text PDFThis study compares the differences in proteomes expressed in tuberous roots of a light orange-fleshed sweetpotato (Ipomoea batatas (L.) Lam. cultivar Yulmi) and a purple-fleshed sweetpotato cultivar (Shinjami).
View Article and Find Full Text PDFWhile the phytotoxic responses of arsenic (As) on plants have been studied extensively, based on physiological and biochemical aspects, very little is known about As stress-elicited changes in plants at the proteome level. Hydroponically grown 2-wk-old rice seedlings were exposed to different doses of arsenate, and roots were collected after 4 days of treatment, as well as after a recovery period. To gain a comprehensive understanding of the precise mechanisms underlying As toxicity, metabolism, and the defense reactions in plants, a comparative proteomic analysis of rice roots has been conducted in combination with physiological and biochemical analyses.
View Article and Find Full Text PDFRoots are highly sensitive organs in plants. To gain a better knowledge of the chilling stress responses of plants, it is imperative to analyze the tissue-specific proteome patterns under chilling stress. In the present study, two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry, has been adopted to investigate the protein expression patterns of rice roots in response to chilling stress.
View Article and Find Full Text PDFA proteomic approach has been adopted to investigate the low-abundant proteins in rice leaf in response to cold stress. Rice seedlings were exposed to different temperatures, such as 5 or 10 degrees C, and samples were collected after different time course. To eliminate the high-abundant proteins in leaf tissues such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), proteins were fractionated by polyethylene glycol (PEG).
View Article and Find Full Text PDFCopper is an essential micronutrient for plants. Present at a high concentration in soil, copper is also regarded as a major toxicant to plant cells due to its potential inhibitory effects against many physiological and biochemical processes. The interference of germination-related proteins by heavy metals has not been well documented at the proteomic level.
View Article and Find Full Text PDFProteomic approaches using two-dimensional gel electrophoresis (2-DE) were adopted to identify proteins from rice leaf that are differentially expressed in response to the rice blast fungus, Magnaporthe grisea. Microscopic observation of inoculated leaf with M. grisea revealed that callose deposition and hypersensitive response was clearly visible in incompatible interactions but excessive invading hypha with branches were evident in compatible interactions.
View Article and Find Full Text PDFRapid, large-scale generation of a Ds transposant population was achieved using a regeneration procedure involving tissue culture of seed-derived calli carrying Ac and inactive Ds elements. In the F(2) progeny from genetic crosses between the same Ds and Ac starter lines, most of the crosses produced an independent germinal transposition frequency of 10-20%. Also, many Ds elements underwent immobilization even though Ac was expressed.
View Article and Find Full Text PDF