Animals can alter their foraging behavior through associative learning, where an encounter with an essential resource (e.g., food or a reproductive opportunity) is associated with nearby environmental cues (e.
View Article and Find Full Text PDFHyperparasitoids are some of the most diverse members of insect food webs. True hyperparasitoids parasitize the larvae of other parasitoids, reaching these larvae with their ovipositor through the herbivore that hosts the parasitoid larva. During pupation, primary parasitoids also may be attacked by pseudohyperparasitoids that lay their eggs on the parasitoid (pre)pupae.
View Article and Find Full Text PDFAdults of many mosquito species feed on plants to obtain metabolic energy and to enhance reproduction. Mosquitoes primarily rely on olfaction to locate plants and are known to respond to a range of plant volatiles. We studied the olfactory response of the yellow fever mosquito Aedes aegypti to methyl jasmonate (MeJA) and cis-jasmone (CiJA), volatile compounds originating from the octadecanoid signaling pathway that plays a key role in plant defense against herbivores.
View Article and Find Full Text PDFDynamic conditions in nature have led to the evolution of behavioural traits that allow animals to use information on local circumstances and adjust their behaviour accordingly, for example through learning. Although learning can improve foraging efficiency, the learned information can become unreliable as the environment continues to change. This could lead to potential fitness costs when memories holding such unreliable information persist.
View Article and Find Full Text PDFEndogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago.
View Article and Find Full Text PDFGlobal climate change is resulting in a wide range of biotic responses, including changes in diel activity and seasonal phenology patterns, range shifts polewards in each hemisphere and/or to higher elevations, and altered intensity and frequency of interactions between species in ecosystems. Oak () and pine () processionary moths (hereafter OPM and PPM, respectively) are thermophilic species that are native to central and southern Europe. The larvae of both species are gregarious and produce large silken 'nests' that they use to congregate when not feeding.
View Article and Find Full Text PDFInsect hyperparasitoids are fourth trophic level organisms that commonly occur in terrestrial food webs, yet they are relatively understudied. These top-carnivores can disrupt biological pest control by suppressing the populations of their parasitoid hosts, leading to pest outbreaks, especially in confined environments such as greenhouses where augmentative biological control is used. There is no effective eco-friendly strategy that can be used to control hyperparasitoids.
View Article and Find Full Text PDFMost malaria-endemic countries are heavily reliant upon rapid diagnostic tests (RDT) for malaria case identification and treatment. RDT previously used for malaria diagnosis can subsequently be used for molecular assays, including qualitative assessment of parasite species present or the carriage of resistance markers, because parasite DNA can be extracted from the blood inside the RDT which remains preserved on the internal components. However, the quantification of parasite density has not previously been possible from used RDT.
View Article and Find Full Text PDFHerbivory affects subsequent herbivores, mainly regulated by the phytohormones jasmonic (JA) and salicylic acid (SA). Additionally, organisms such as soil microbes belowground or parasitoids that develop inside their herbivorous hosts aboveground, can change plant responses to herbivory. However, it is not yet well known how organisms of trophic levels other than herbivores, below- and above-ground, alter the interactions between insect species sharing a host plant.
View Article and Find Full Text PDFMalaria parasites () can change the attractiveness of their vertebrate hosts to vectors, leading to a greater number of vector-host contacts and increased transmission. Indeed, naturally -infected children have been shown to attract more mosquitoes than parasite-free children. Here, we demonstrate -induced increases in the attractiveness of skin odor in Kenyan children and reveal quantitative differences in the production of specific odor components in infected vs.
View Article and Find Full Text PDFDeletions of the Plasmodium falciparum hrp2 and hrp3 genes can affect the performance of HRP2-based malaria rapid diagnostic tests (RDTs). Such deletions have been reported from South America, India and Eritrea. Whether these parasites are widespread in East Africa is unknown.
View Article and Find Full Text PDFEvidence is accumulating that Plasmodium-infected vertebrates are more attractive to mosquitoes than noninfected hosts, particularly when high levels of gametocytes are present. Changes in host odour have been suggested as a likely target for parasite manipulation because olfactory cues are crucial to mosquitoes in search of a bloodmeal host. This review discusses two routes that may lead to such changes: (i) direct emission of volatile products from malaria parasites, and (ii) changes in skin microbial composition that could lead to changes in the vertebrate odour profile.
View Article and Find Full Text PDFIt has been suggested that Plasmodia manipulate their vertebrate hosts to enhance parasite transmission. Using a dual-choice olfactometer, we investigated the attraction of Anopheles gambiae to 50 Kenyan children (aged 5-12 years) who were naturally infected with Plasmodium falciparum or noninfected controls. Microscopic gametocyte carriers attracted almost 2 times more mosquitoes than children who were parasite free, harbored asexual stages, or had gametocytes at submicroscopic densities.
View Article and Find Full Text PDFMalaria parasites are thought to influence mosquito attraction to human hosts, a phenomenon that may enhance parasite transmission. This is likely mediated by alterations in host odour because of its importance in mosquito host-searching behaviour. Here, we report that the human skin odour profile is affected by malaria infection.
View Article and Find Full Text PDFBackground: Sex determination mechanisms are known to be evolutionarily labile but the factors driving transitions in sex determination mechanisms are poorly understood. All insects of the Hymenoptera are haplodiploid, with males normally developing from unfertilized haploid eggs. Under complementary sex determination (CSD), diploid males can be produced from fertilized eggs that are homozygous at the sex locus.
View Article and Find Full Text PDFIntroduction: Allelic incompatibility between individuals of the same species should select for mate choice based on the genetic make-up of both partners at loci that influence offspring fitness. As a consequence, mate choice may be an important driver of allelic diversity. A complementary sex determination (CSD) system is responsible for intraspecific allelic incompatibility in many species of ants, bees, and wasps.
View Article and Find Full Text PDFAn attractive way to improve our understanding of sex determination evolution is to study the underlying mechanisms in closely related species and in a phylogenetic perspective. Hymenopterans are well suited owing to the diverse sex determination mechanisms, including different types of Complementary Sex Determination (CSD) and maternal control sex determination. We investigated different types of CSD in four species within the braconid wasp genus Asobara that exhibit diverse life-history traits.
View Article and Find Full Text PDFDespite its fundamental role in development, sex determination is highly diverse among animals. Approximately 20% of all animals are haplodiploid, with haploid males and diploid females. Haplodiploid species exhibit diverse but poorly understood mechanisms of sex determination.
View Article and Find Full Text PDFIt is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile emissions of lima bean and cucumber plants upon multi-species herbivory by spider mites (Tetranychus urticae) and caterpillars (Spodoptera exigua) in comparison to single-species herbivory.
View Article and Find Full Text PDFThe dominant and ancestral mode of sex determination in the Hymenoptera is arrhenotokous parthenogenesis, in which diploid females develop from fertilized eggs and haploid males develop from unfertilized eggs. We discuss recent progress in the understanding of the genetic and cytoplasmic mechanisms that make arrhenotoky possible. The best-understood mode of sex determination in the Hymenoptera is complementary sex determination (CSD), in which diploid males are produced under conditions of inbreeding.
View Article and Find Full Text PDFCarnivorous arthropods can use herbivore-induced plant volatiles to locate their herbivorous prey. In the field, carnivores are confronted with information from plants infested with herbivores that may differ in their suitability as prey. Discrimination by the predatory mite Phytoseiulus persimilis between volatiles from lima bean plants infested with the prey herbivore Tetranychus urticae, or plants infested with the nonprey caterpillar Spodoptera exigua, depends on spider mite density.
View Article and Find Full Text PDFMany carnivorous arthropods use herbivore-induced plant volatiles to locate their prey. These plant volatiles are blends of up to hundreds of compounds. It is often unknown which compounds in such a complex volatile blend represent the signal to the foraging carnivore.
View Article and Find Full Text PDF