The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO).
View Article and Find Full Text PDFThe performance of the pesticide fate model PRZM to predict the fate of two fungicides, penconazole and metalaxyl, and the major metabolite of metalaxyl (CGA-62826), in amended and unamended vineyard soils was tested from undisturbed soils columns experiments. Three different treatments were tested in two soils: control soil (unamended), and soil amended with fresh or composted spent mushroom substrates, which correspond to common agricultural practices in Spain. Leaching experiments were performed under non-saturated flow conditions.
View Article and Find Full Text PDF