It has been hypothesized that black carbon (BC) influences mixed-phase clouds by acting as an ice-nucleating particle (INP). However, the literature data for ice nucleation by BC immersed in supercooled water are extremely varied, with some studies reporting that BC is very effective at nucleating ice, whereas others report no ice-nucleating ability. Here we present new experimental results for immersion mode ice nucleation by BC from two contrasting fuels (n-decane and eugenol).
View Article and Find Full Text PDFIce-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10-10 ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations.
View Article and Find Full Text PDFLarge biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias.
View Article and Find Full Text PDFThe amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties. The formation of ice in clouds is facilitated by the presence of airborne ice-nucleating particles. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice.
View Article and Find Full Text PDF