Publications by authors named "Jesus Rodrigo Comino"

The Sistan region in Southeastern Iran is one of the world's most sensitive areas when it comes to sandstorms and wind erosion. One of the most influential factors in interpreting sandstorms is sand drift potential (DP), which is directly related to wind speed. Accurately, monitoring this phenomenon is still being determined, considering various temporal scales.

View Article and Find Full Text PDF

To evaluate the response of saffron to animal manure, and biological and chemical fertilizer in an arid climate, an experiment was performed as split plots based on a randomized complete blocks design with three replications during three consecutive crop growth seasons (2015-2018) at the Research Farm of University of Gonabad, Iran. The experimental treatments included application (60 t ha) and non-application (control) of manure as the main plot and the use of biosulfur (5 kg ha), biophosphate (3 L ha), nitroxin (3 L ha), chemical fertilizer (150, 100, and 100 kg ha of urea, triple superphosphate, and potassium sulfate, respectively), and no fertilizer application (control) as the sub-plot. The results showed a highly significant response of the quantitative traits of saffron to the application of manure, which increased the leaf, flower, and corm indices of saffron by a mean of 15.

View Article and Find Full Text PDF

Evaluation of grazing impacts on land degradation processes is a difficult task due to the heterogeneity and complex interacting factors involved. In this paper, we designed a new methodology based on a predictive index of grazing susceptibility to land degradation index (GSLDI) built on artificial intelligence to assess land degradation susceptibility in areas affected by small ruminants (SRs) of sheep and goats grazing. The data for model training, validation, and testing consisted of sampling points (erosion and no-erosion) taken from aerial imagery.

View Article and Find Full Text PDF

Non-planned agricultural land abandonment is affecting natural hydrological processes. This is especially relevant in vulnerable arid karstic watersheds, where water resources are scarce but vital for sustaining natural ecosystems and human settlements. However, studies assessing the spatiotemporal evolution of the hydrological responses considering land-use changes and precipitation cycles for long periods are rare in karstic environments.

View Article and Find Full Text PDF

Remote sensing of specific climatic and biogeographical parameters is an effective means of evaluating the large-scale desertification status of drylands affected by negative human impacts. Here, we identify and analyze desertification trends in Iran for the period 2001-2015 via a combination of three indices for vegetation (NPP-net primary production, NDVI-normalized difference vegetation index, LAI-leaf area index) and two climate indices (LST-land surface temperature, P-precipitation). We combine these indices to identify and map areas of Iran that are susceptible to land degradation.

View Article and Find Full Text PDF

Climate change generates negative impacts on human health. However, little is known about specific impacts on eye diseases, especially in arid and semi-arid areas where increases in air temperatures are expected. Therefore, the main goals of this research are: (i) to highlight the association between common eye diseases and environmental factors; and (ii) to analyze, through the available literature, the health expenditure involved in combating these diseases and the savings from mitigating the environmental factors that aggravate them.

View Article and Find Full Text PDF

In order to prevent land degradation in areas before hosting big events such as the Winter Olympic Games (WOG), developing strategic vegetation restoration plans is key. To evaluate four experimental areas with different degrees of human impacts located in the Chongli District, northern Hebei Province, China, where the coming WOG 2022 will take considering: i) the feedback mechanisms between vegetation and soil in the process of future vegetation restoration; ii) the vegetation productivity of land in different land-use types; iii) the management mode considering the sustainable development as the primary goal. To achieve these goals, we applied a minimum soil data set (MDS) to screen the most relevant indicators (soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), available potassium (AK), available nitrogen (AN), soil bulk density (BD), soil porosity (SP), pH, clay, silt, sand and gravel), and the nonlinear scoring method to establish a soil quality index (SQI).

View Article and Find Full Text PDF

In recent years, the occurrence of floods is one of the most important challenges facing in Hamadan city. In the absence/inefficiency of urban drainage systems, rainwater harvesting (RWH) systems as low-impact development (LID) methods can be considered as a measure to reduce the floods. In this study, three scenarios concerning the RWH from the roof surfaces are studied to evaluate the type of the harvested water on reducing flooding.

View Article and Find Full Text PDF

Soil erosion can present a major threat to agriculture due to loss of soil, nutrients, and organic carbon. Therefore, soil erosion modelling is one of the steps used to plan suitable soil protection measures and detect erosion hotspots. A bibliometric analysis of this topic can reveal research patterns and soil erosion modelling characteristics that can help identify steps needed to enhance the research conducted in this field.

View Article and Find Full Text PDF

Soil erosion (SE) and climate change are closely related to environmental challenges that influence human wellbeing. However, the potential impacts of both processes in semi-arid areas are difficult to be predicted because of atmospheric variations and non-sustainable land use management. Thus, models can be employed to estimate the potential effects of different climatic scenarios on environmental and human interactions.

View Article and Find Full Text PDF
Article Synopsis
  • The study reviewed soil erosion prediction models from peer-reviewed literature published between 1994 and 2017, aiming to identify key processes, application regions, and gaps in research.
  • A collaborative effort involving 67 soil-erosion scientists led to the creation of the 'Global Applications of Soil Erosion Modelling Tracker (GASEMT)', which compiled 3030 modeling records from 126 countries, covering all continents except Antarctica.
  • The GASEMT database is open-source, designed to support future soil erosion research and the United Nations' global soil erosion assessment, allowing for community contributions and enhancements.
View Article and Find Full Text PDF

Natural hazards are diverse and uneven in time and space, therefore, understanding its complexity is key to save human lives and conserve natural ecosystems. Reducing the outputs obtained after each modelling analysis is key to present the results for stakeholders, land managers and policymakers. So, the main goal of this survey was to present a method to synthesize three natural hazards in one multi-hazard map and its evaluation for hazard management and land use planning.

View Article and Find Full Text PDF

Soil degradation due to erosion is a significant worldwide problem at different spatial (from pedon to watershed) and temporal scales. All stages and factors in the erosion process must be detected and evaluated to reduce this environmental issue and protect existing fertile soils and natural ecosystems. Laboratory studies using rainfall simulators allow single factors and interactive effects to be investigated under controlled conditions during extreme rainfall events.

View Article and Find Full Text PDF

The Terrestrial Photogrammetry Scanner (TEPHOS) offers the possibility to precisely monitor linear erosion features using the Structure from Motion (SfM) technique. This is a static, multi-camera array and dynamically moves the digital videoframe camera designed to obtain 3-D models of rills before and after the runoff experiments. The main goals were to (1) obtain better insight into the rills; (2) reduce the technical gaps generated during the runoff experiments using only one camera; (3) enable the visual location of eroded, transported and accumulated material.

View Article and Find Full Text PDF
Article Synopsis
  • A study assessed soil erosion and sediment movement across different slopes in the Dapotou closed watershed, a karst region in Southwest China, using the Cs tracing technique.
  • Findings revealed that annual soil erosion rates varied by slope position: 0.87 cm/year on shoulders, 0.35 cm/year on backslopes, and 0.49 cm/year on footslopes, with significant sediment deposition in the depression bottom (2.68 cm/year).
  • The research indicated a high annual soil erosion modulus of 632 t/km²/year, highlighting erosion concerns, and identified a correlation between Cs concentrations and soil organic matter/nitrogen, aiming to support soil erosion management in karst ecosystems.
View Article and Find Full Text PDF

The use of unmanned aerial vehicles (UAVs) in earth science research has drastically increased during the last decade. The reason being innumerable advantages to detecting and monitoring various environmental processes before and after certain events such as rain, wind, flood, etc. or to assess the current status of specific landforms such as gullies, rills, or ravines.

View Article and Find Full Text PDF

Solarisation application by mulching the soil with a polyethene plastic film has a significant influence on soil thermal characteristics (TCs), which, in turn, show a strong impact on soil energy balance and agricultural productivity. In countries like Iraq with highly populated cities, such as Baghdad, that need large quantities of agriproducts, this kind of clean energy should play a key role in sustainable agricultural production. However, little is known about the effects of different soil solarisation systems in specific cultivated fields for this country characterised by an arid climate and silty clay soils.

View Article and Find Full Text PDF

The effects of water stress on fenugreek crops are well documented. However, little is known about how these plants respond to water deficits under a soil-mulching system when the surface is protected. Therefore, the current research aims to demonstrate the possibility of reducing the impact of water stress and weed competition on the fenugreek crop through the use of wheat residues as a cover crop on the soil surface.

View Article and Find Full Text PDF

The quasi-natural meandering type of alluvial rivers is quite unusual in Central European watersheds. The lack of extensive regulation allows such rivers to shift along their floodplain and cause erosion of natural and agricultural lands. Description of channel morphometric parameters over decadal timescales allows a better understanding of such river systems like Sajó River (Slovakia-Hungary) where no preliminary work is available regarding channel dynamics.

View Article and Find Full Text PDF

Water is polluted by increasing activities of population and the necessity to provide them with goods and services that use water as a vital resource. The contamination of water due to heavy metals (HMs) is a big concern for humankind; however, global studies related to this topic are scarce. Thus, the current review assesses the content of HMs in surface water bodies throughout the world from 1994 to 2019.

View Article and Find Full Text PDF

In the context of the Sustainable Development Goals (SDG), understanding landscape evolution is essential to design long-term management plans. In agricultural fields, such as the vineyards on steep slopes, the terraces offer one of the most important morphological changes. However, it is not clear if the poorly managed agricultural terraces are optimal to reduce soil erosion and overland flow, although the trafficability is improved.

View Article and Find Full Text PDF

In arid and semi-arid areas, groundwater resource is one of the most important water sources by the humankind. Knowledge of groundwater distribution over space, associated flow and basic exploitation measures can play a significant role in planning sustainable development, especially in arid and semi-arid areas. Groundwater potential mapping (GWPM) fits in this context as the tool used to predict the spatial distribution of groundwater.

View Article and Find Full Text PDF

The research focused on the evaluation of the effect of soil erosion processes on SOC sequestration rate after 5 years of cover crop soil management in Mediterranean vineyards (Sicily, Italy). Two paired sites, one in a sloping area and another one in a contiguous flat area, were chosen. The vineyard soils of the two plots of each paired site were managed with conventional soil tillage (CT) and Vicia faba cover crop (CC) the preceding 5 years.

View Article and Find Full Text PDF

The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987-2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons.

View Article and Find Full Text PDF

Coastal lagoon ecosystems are vulnerable to eutrophication, which leads to the accumulation of nutrients from the surrounding watershed over the long term. However, there is a lack of information about methods that could accurate quantify this problem in rapidly developed countries. Therefore, various statistical methods such as cluster analysis (CA), principal component analysis (PCA), partial least square (PLS), principal component regression (PCR), and ordinary least squares regression (OLS) were used in this study to estimate total organic matter content in sediments (TOM) using other parameters such as temperature, dissolved oxygen (DO), pH, electrical conductivity (EC), nitrite (NO), nitrate (NO), biological oxygen demand (BOD), phosphate (PO), total phosphorus (TP), salinity, and water depth along a 3-km transect in the Gomishan Lagoon (Iran).

View Article and Find Full Text PDF