In this paper, the natural frequencies (NFs) identification by finite element method (FEM) is applied to a two degrees-of-freedom (2-DOF) planar robot, and its validation through a novel experimental methodology, the Multiple Signal Classification (MUSIC) algorithm, is presented. The experimental platforms are two different 2-DOF planar robots with different materials for the links and different types of actuators. The FEM is carried out using ANSYS™ software for the experiments, with vibration signal analysis by MUSIC algorithm.
View Article and Find Full Text PDFAlthough induction motors (IMs) are robust and reliable electrical machines, they can suffer different faults due to usual operating conditions such as abrupt changes in the mechanical load, voltage, and current power quality problems, as well as due to extended operating conditions. In the literature, different faults have been investigated; however, the broken rotor bar has become one of the most studied faults since the IM can operate with apparent normality but the consequences can be catastrophic if the fault is not detected in low-severity stages. In this work, a methodology based on convolutional neural networks (CNNs) for automatic detection of broken rotor bars by considering different severity levels is proposed.
View Article and Find Full Text PDFHeart diseases are among the most common death causes in the population. Particularly, sudden cardiac death (SCD) is the cause of 10% of the deaths around the world. For this reason, it is necessary to develop new methodologies that can predict this event in the earliest possible stage.
View Article and Find Full Text PDFFlexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation.
View Article and Find Full Text PDF