During CNS development, there is prominent expansion of the anterior region, the brain. In , anterior CNS expansion emerges from three rostral features: (1) increased progenitor cell generation, (2) extended progenitor cell proliferation, (3) more proliferative daughters. We find that (mouse ), () and () are important for brain progenitor generation.
View Article and Find Full Text PDFA conserved feature of the central nervous system (CNS) is the prominent expansion of anterior regions (brain) compared with posterior (nerve cord). The cellular and regulatory processes driving anterior CNS expansion are not well understood in any bilaterian species. Here, we address this expansion in and mouse.
View Article and Find Full Text PDFHox gene activity leads to morphological diversity of organs or structures in different species. One special case of Hox function is the elimination of a particular structure. The Abdominal-B Hox gene of Drosophila melanogaster provides an example of such activity, as this gene suppresses the formation of the seventh abdominal segment in the adult.
View Article and Find Full Text PDFCompartments are units of cell lineage that subdivide territories with different developmental potential. In Drosophila, the wing and haltere discs are subdivided into anterior and posterior (A/P) compartments, which require the activity of Hedgehog, and into dorsal and ventral (D/V) compartments, needing Notch signaling. There is enrichment in actomyosin proteins at the compartment boundaries, suggesting a role for these proteins in their maintenance.
View Article and Find Full Text PDF