Obstructive sleep apnea (OSA) is a common sleep disorder that is associated with a wide variety of health conditions, including cardiovascular, cerebrovascular, metabolic, neoplastic, and neurocognitive manifestations. OSA, as a chronic condition, is mainly characterised by repeated upper airway obstructions during sleep that cause episodes of intermittent hypoxia (IH), resulting in tissue hypoxia-reoxygenation cycles. Decreased arterial oxygen pressure (PaO) and haemoglobin saturation (SatO) stimulate reflex responses to overcome the obstruction.
View Article and Find Full Text PDFExperimental evidence suggests that chronic intermittent hypoxia (CIH), a major hallmark of obstructive sleep apnea (OSA), boosts carotid body (CB) responsiveness, thereby causing increased sympathetic activity, arterial and pulmonary hypertension, and cardiovascular disease. An enhanced circulatory chemoreflex, oxidative stress, and NO signaling appear to play important roles in these responses to CIH in rodents. Since the guinea pig has a hypofunctional CB (i.
View Article and Find Full Text PDFATG4 (autophagy related 4 cysteine peptidase); ATG4A (autophagy related 4A cysteine peptidase); ATG4B (autophagy related 4B cysteine peptidase); ATG4C (autophagy related 4C cysteine peptidase); ATG4D (autophagy related 4D cysteine peptidase); Atg8 (autophagy related 8); GABARAP (GABA type A receptor-associated protein); GABARAPL1(GABA type A receptor-associated protein like 1); GABARAPL2 (GABA type A receptor-associated protein like 2); MAP1LC3A/LC3A (microtubule associated protein 1 light chain 3 alpha); MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta); mATG8 (mammalian Atg8); PE (phosphatidylethanolamine); PS (phosphatydylserine); SQSTM1/p62 (sequestosome 1).
View Article and Find Full Text PDFMetformin is a glucose-lowering, insulin-sensitizing drug that is commonly used in the treatment of type 2 diabetes (T2D). In the last decade, the carotid body (CB) has been described as a metabolic sensor implicated in the regulation of glucose homeostasis, being CB dysfunction crucial for the development of metabolic diseases, such as T2D. Knowing that metformin could activate AMP-activated protein kinase (AMPK) and that AMPK has been described to have an important role in CB hypoxic chemotransduction, herein we have investigated the effect of chronic metformin administration on carotid sinus nerve (CSN) chemosensory activity in basal and hypoxic and hypercapnic conditions in control animals.
View Article and Find Full Text PDFEndothelial dysfunction is an essential intermediary for development of cardiovascular diseases associated with diabetes and hypertension (HT). The carotid body (CB) dysfunction contributes to dysmetabolic states, and the resection of carotid sinus nerve (CSN) prevents and reverts dysmetabolism and HT. Herein, we investigated if CSN denervation ameliorates systemic endothelial dysfunction in an animal model of type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFThis work analyzes the impact of two conditions, intermittent hypoxia exposure and high-fat diet in rats as models of sleep apnea. We studied the autonomic activity and histological structure of the rat jejunum and whether the overlapping of both conditions, as often observed in patients, induces more deleterious effects on the intestinal barrier. We found alterations in jejunum wall histology, predominantly in HF rats, based on increased crypt depth and submucosal thickness, as well as decreased muscularis propria thickness.
View Article and Find Full Text PDFObstructive sleep apnea (OSA) during pregnancy is characterized by episodes of intermittent hypoxia (IH) during sleep, resulting in adverse health outcomes for mother and offspring. Despite a prevalence of 8-20% in pregnant women, this disorder is often underdiagnosed.We have developed a murine model of gestational OSA to study IH effects on pregnant mothers, placentas, fetuses, and offspring.
View Article and Find Full Text PDFHypoxia may be associated with alterations in bone remodeling, but the published results are contradictory. The aim of this study was to characterize the bone morphometry changes subject to hypoxia for a better understanding of the bone response to hypoxia and its possible clinical consequences on the bone metabolism. This study analyzed the bone morphometry parameters by micro-computed tomography (μCT) in rat and guinea pig normobaric hypoxia models.
View Article and Find Full Text PDFChronic sustained hypoxia (CSH), as found in individuals living at a high altitude or in patients suffering respiratory disorders, initiates physiological adaptations such as carotid body stimulation to maintain oxygen levels, but has deleterious effects such as pulmonary hypertension (PH). Obstructive sleep apnea (OSA), a respiratory disorder of increasing prevalence, is characterized by a situation of chronic intermittent hypoxia (CIH). OSA is associated with the development of systemic hypertension and cardiovascular pathologies, due to carotid body and sympathetic overactivation.
View Article and Find Full Text PDFSeveral studies demonstrated a link between obstructive sleep apnea (OSA) and the development of insulin resistance. However, the main event triggering insulin resistance in OSA remains to be clarified. Herein, we investigated the effect of mild and severe chronic intermittent hypoxia (CIH) on whole-body metabolic deregulation and visceral adipose tissue dysfunction.
View Article and Find Full Text PDFType 2 diabetes (T2D) is associated with cardiovascular and pulmonary disease. How T2D affects pulmonary endothelial function is not well characterized. We investigated the effects of T2D progression on contractility machinery and endothelial function in the pulmonary and systemic circulation and the mechanisms promoting the dysfunction, using pulmonary artery (PA) and aorta.
View Article and Find Full Text PDFKey Points: Adenosine and ATP are excitatory neurotransmitters involved in the carotid body (CB) response to hypoxia. During ageing the CB exhibits a decline in its functionality, demonstrated by decreased hypoxic responses. In aged rats (20-24 months old) there is a decrease in: basal and hypoxic release of adenosine and ATP from the CB; expression of adenosine and ATP receptors in the petrosal ganglion; carotid sinus nerve (CSN) activity in response to hypoxia; and ventilatory responses to ischaemic hypoxia.
View Article and Find Full Text PDFCarotid body (CB) chemoreceptor cells sense arterial blood PO₂, generating a neurosecretory response proportional to the intensity of hypoxia. Hydrogen sulfide (H₂S) is a physiological gaseous messenger that is proposed to act as an oxygen sensor in CBs, although this concept remains controversial. In the present study we have used the H₂S scavenger and vitamin B analog hydroxycobalamin (Cbl) as a new tool to investigate the involvement of endogenous H₂S in CB oxygen sensing.
View Article and Find Full Text PDFThe molecular mechanisms underlying O-sensing by carotid body (CB) chemoreceptors remain undetermined. Mitochondria have been implicated, due to the sensitivity of CB response to electron transport chain (ETC) blockers. ETC is one of the major sources of reactive oxygen species, proposed as mediators in oxygen sensing.
View Article and Find Full Text PDFReduced nitric oxide (NO) bioavailability correlates with impaired cardiovascular function. NO is extremely labile and has been challenging to develop as a therapeutic agent. However, NO bioavailability could be enhanced by pharmacologically targeting endogenous NO regulatory pathways.
View Article and Find Full Text PDFClinical and experimental evidence indicates a positive correlation between chronic intermittent hypoxia (CIH), increased carotid body (CB) chemosensitivity, enhanced sympatho-respiratory coupling and arterial hypertension and cardiovascular disease. Several groups have reported that both the afferent and efferent arms of the CB chemo-reflex are enhanced in CIH animal models through the oscillatory CB activation by recurrent hypoxia/reoxygenation episodes. Accordingly, CB ablation or denervation results in the reduction of these effects.
View Article and Find Full Text PDFAims/hypothesis: A new class of treatments termed bioelectronic medicines are now emerging that aim to target individual nerve fibres or specific brain circuits in pathological conditions to repair lost function and reinstate a healthy balance. Carotid sinus nerve (CSN) denervation has been shown to improve glucose homeostasis in insulin-resistant and glucose-intolerant rats; however, these positive effects from surgery appear to diminish over time and are heavily caveated by the severe adverse effects associated with permanent loss of chemosensory function. Herein we characterise the ability of a novel bioelectronic application, classified as kilohertz frequency alternating current (KHFAC) modulation, to suppress neural signals within the CSN of rodents.
View Article and Find Full Text PDFThere is increasing interest in the physiological actions and therapeutic potential of the gasotransmitter hydrogen sulfide (HS). In addition to exerting antihypertensive, anti-inflammatory, antioxidant, and pro-angiogenic effects, HS has been suggested to play a central and ubiquitous role in O sensing. According to this concept, because HS is metabolized by oxidation, its cellular concentration varies inversely with the ambient pO such that hypoxia causes a rise in intracellular [HS]; this then acts to induce appropriate cellular responses.
View Article and Find Full Text PDFBackground And Purpose: Glabridin is a major flavonoid in Glycyrrhiza glabra (licorice) root, a traditional Asian medicine. Glabridin is reported to have anti-atherogenic, anti-inflammatory and anti-nephritic properties; however its effects on vascular tone remain unexplored.
Experimental Approach: We examined the effect of glabridin on rat main mesenteric artery using isometric myography and also ELISA to measure cGMP levels.
Although the gasotransmitter hydrogen sulfide (H(2)S) generally dilates systemic arteries in mammals, it causes constriction of pulmonary arteries. In isolated rat pulmonary arteries, we have shown that the H(2)S precursor cysteine enhances both hypoxic pulmonary vasoconstriction and tension development caused by the agonist prostaglandin F(2α) under normoxic conditions. These effects were blocked by propargylglycine (PAG), a blocker of the enzyme cystathionine γ lyase which metabolises cysteine to sulfide.
View Article and Find Full Text PDFBackground And Purpose: The importance of tyrosine kinases in airway smooth muscle (ASM) contraction is not fully understood. The aim of this study was to investigate the role of Src-family kinases (SrcFK) and focal adhesion kinase (FAK) in GPCR-mediated ASM contraction and associated signalling events.
Experimental Approach: Contraction was recorded in intact or α-toxin permeabilized rat bronchioles.
Key Points: Adult animals that have been perinatally exposed to oxygen-rich atmospheres (hyperoxia), recalling those used for oxygen therapy in infants, exhibit a loss of hypoxic pulmonary vasoconstriction, whereas vasoconstriction elicited by depolarizing agents is maintained. Loss of pulmonary hypoxic vasoconstriction is not linked to alterations in oxygen-sensitive K(+) currents in pulmonary artery smooth muscle cells. Loss of hypoxic vasoconstriction is associated with early postnatal oxidative damage and corrected by an antioxidant diet.
View Article and Find Full Text PDFAims: Sphingosylphosphorylcholine (SPC) elicits vasoconstriction at micromolar concentrations. At lower concentrations (≤1 µmol/L), however, it does not constrict intrapulmonary arteries (IPAs), but strongly potentiates vasoreactivity. Our aim was to determine whether this also occurs in a systemic artery and to delineate the signalling pathway.
View Article and Find Full Text PDF