Candidaalbicans normally colonizes the human gastrointestinal tract as a commensal. Studying fungal factors involved in colonizing the mammalian gastrointestinal tract requires mouse models with altered microbiota. We have obtained strains of C.
View Article and Find Full Text PDFCandida albicans populations present in the mammalian gastrointestinal tract are a major source of candidemia and subsequent severe invasive candidiasis in those individuals with acquired or congenital immune defects. Understanding the mechanisms used by this fungus to colonize this niche is, therefore, of primary importance to develop new therapeutic options that could lead to control its proliferation in the host. The recent popularization of models of commensalism in mice combined with the already powerful tools in C.
View Article and Find Full Text PDFInvasive fungal infections, which kill more than 1.6 million patients each year worldwide, are difficult to treat due to the limited number of antifungal drugs (azoles, echinocandins, and polyenes) and the emergence of antifungal resistance. The transcription factor Crz1, a key regulator of cellular stress responses and virulence, is an attractive therapeutic target because this protein is absent in human cells.
View Article and Find Full Text PDFAdaptation to ER stress is linked to the pathogenicity of . The fungus responds to ER stress primarily by activating the conserved Ire1-Hac1-dependent unfolded protein response (UPR) pathway. Subsequently, when ER homeostasis is re-established, the UPR is attenuated in a timely manner, a facet that is unexplored in .
View Article and Find Full Text PDFSecretory immunoglobulin A (sIgA) plays an important role in gut barrier protection by shaping the resident microbiota community, restricting the growth of bacterial pathogens and enhancing host protective immunity via immunological exclusion. Here, we found that a portion of the microbiota-driven sIgA response is induced by and directed towards intestinal fungi. Analysis of the human gut mycobiota bound by sIgA revealed a preference for hyphae, a fungal morphotype associated with virulence.
View Article and Find Full Text PDFThe unfolded protein response (UPR), crucial for the maintenance of endoplasmic reticulum (ER) homeostasis, is tied to the regulation of multiple cellular processes in pathogenic fungi. Here, we show that Candida albicans relies on an ER-resident protein, inositol-requiring enzyme 1 (Ire1) for sensing ER stress and activating the UPR. Compromised Ire1 function impacts cellular processes that are dependent on functional secretory homeostasis, as inferred from transcriptional profiling.
View Article and Find Full Text PDFThe success of as a pathogen relies on its ability to adapt and proliferate in different environmental niches. Pathways regulated by mitogen-activated protein kinases (MAPKs) are involved in sensing environmental conditions and developing an accurate adaptive response. Given the frequent cooperative roles of these routes in cellular functions, we have generated mutants defective in all combinations of the four described MAPKs in and characterized its phenotype regarding sensitiveness to specific drugs, morphogenesis and interaction with host immune cells.
View Article and Find Full Text PDFis an important human fungal pathogen responsible for tens of millions of infections as well as hundreds of thousands of severe life-threatening infections each year. MAP kinase (MAPK) signal transduction pathways facilitate the sensing and adaptation to external stimuli and control the expression of key virulence factors such as the yeast-to-hypha transition, the biogenesis of the cell wall, and the interaction with the host. In the present study, we have combined molecular approaches and infection biology to analyse the role of MAPK pathways during an epithelial invasion.
View Article and Find Full Text PDFHypoxic adaptation pathways, essential for Candida albicans pathogenesis, are tied to its transition from a commensal to a pathogen. Herein, we identify a WW domain-containing protein, Ifu5, as a determinant of hypoxic adaptation that also impacts normoxic responses in this fungus. Ifu5 activity supports glycosylation homeostasis via the Cek1 mitogen-activated protein kinase-dependent up-regulation of PMT1, under normoxia.
View Article and Find Full Text PDFdisplays the ability to adapt to a wide variety of environmental conditions, triggering signaling pathways and transcriptional regulation. Sko1 is a transcription factor that was previously involved in early hypoxic response, cell wall remodeling, and stress response. In the present work, the role of mutant in o and studies was explored.
View Article and Find Full Text PDFIn 1993, Brewster and Gustin described the existence of a kinase whose activity was essential for Saccharomyces cerevisiae to grow in environments with high osmolarity. This led to the discovery of the HOG pathway, a MAP kinase (MAPK) pathway that has been revealed to be crucial to respond to a wide range of stress conditions frequently encountered by fungi in their common habitats. MAPK signaling is initiated at the plasma membrane, where triggering stimuli lead to a phosphorylation cascade that ultimately activates transcription factors to ensure an appropriate adaptive response.
View Article and Find Full Text PDFThe Small World Initiative (SWI) and Tiny Earth are a consolidated and successful education programs rooted in the USA that tackle the antibiotic crisis by a crowdsourcing strategy. Based on active learning, it challenges young students to discover novel bioactive-producing microorganisms from environmental soil samples. Besides its pedagogical efficiency to impart microbiology content in academic curricula, SWI promotes vocations in research and development in Experimental Sciences and, at the same time, disseminates the antibiotic awareness guidelines of the World Health Organization.
View Article and Find Full Text PDFAim: To investigate the role of Candida albicans TUP1-mediated filamentation in the colonization of the mice gut.
Materials & Methods: We used molecular genetics to generate a strain where filamentation is regulated by altering the expression of the TUP1 gene with tetracyclines.
Results: The colonization rates reached with the TUP1-RFP strain were lower compared with wild-type strain and completely absent after induction of filamentation.
Front Cell Infect Microbiol
February 2019