A tetrapodal pentadentate nitrogen ligand (2,6-bis(1,1-di(aminomethyl)ethyl)pyridine, 1) is used for the synthesis of the azido-iron(III) complex [(1)Fe(N3)]X2 where X is either Br or PF6. By means of electrospray ionization mass spectrometry, the dication [(1)Fe(N3)]2+ can be transferred into the gas phase as an intact entity. Upon collisional activation, [(1)Fe(N3)]2+ undergoes an expulsion of molecular nitrogen to afford the dicationic nitrido-iron species [(1)FeN]2+ as an intermediate, which upon further activation can intramolecularly activate C-H- and N-H bonds of the chelating ligand 1 or can transfer an NH unit in bimolecular reactions with activated olefins.
View Article and Find Full Text PDFComplexation of the tetrapodal pentadentate NN4 ligand 2,6-C5H3N[CMe(CH2NH2)2]2 (I) with iron(II) perchlorate hydrate in methanol, in the presence of N-methylimidazole, produces a diferrous complex with a single, unsupported mu-OH ligand between two {(I)FeII} coordination modules.
View Article and Find Full Text PDFA metallosupramolecular coordination polyelectrolyte prepared by the reaction of cobalt(II) with a novel bisterpyridine ligand has been assembled as the active component in electrochromic films by sequential deposition using electrostatic layer-by-layer self-assembly.
View Article and Find Full Text PDFThe tetrapodal pentaamine 2,6-C5H3N[CMe(CH2NH2)2]2 (pyN4, 1) forms a series of octahedral iron(II) complexes of general formula [Fe(L)(1)]Xn with a variety of small-molecule ligands L at the sixth coordination site (L = X = Br, n = 1 (2); L = CO, X = Br, n = 2 (3); L = NO, X = Br, n = 2 (4); L = NO+, X = Br, n = 3 (5); L = NO2-, X = Br, n = 1 (6)). The bromo complex, which is remarkably stable towards hydrolysis and oxidation, serves as the precursor for all other complexes, which may be obtained by ligand exchange, employing CO, NO, NOBF4, and NaNO2, respectively. All complexes have been fully characterised, including solid-state structures in most cases.
View Article and Find Full Text PDF