Human immune cells are under constant evolutionary pressure, primarily through their role as first line of defence against pathogens. Most studies on immune adaptation are, however, based on protein-coding genes without considering their cellular context. Here, using data from the Human Cell Atlas, we infer the gene adaptation rate of the human immune landscape at cellular resolution.
View Article and Find Full Text PDFInferring the effects of positive selection on genomes remains a critical step in characterizing the ultimate and proximate causes of adaptation across species, and quantifying positive selection remains a challenge due to the confounding effects of many other evolutionary processes. Robust and efficient approaches for adaptation inference could help characterize the rate and strength of adaptation in nonmodel species for which demographic history, mutational processes, and recombination patterns are not currently well-described. Here, we introduce an efficient and user-friendly extension of the McDonald-Kreitman test (ABC-MK) for quantifying long-term protein adaptation in specific lineages of interest.
View Article and Find Full Text PDFThe McDonald and Kreitman test is one of the most powerful and widely used methods to detect and quantify recurrent natural selection in DNA sequence data. One of its main limitations is the underestimation of positive selection due to the presence of slightly deleterious variants segregating at low frequencies. Although several approaches have been developed to overcome this limitation, most of them work on gene pooled analyses.
View Article and Find Full Text PDFAdaptive challenges that humans faced as they expanded across the globe left specific molecular footprints that can be decoded in our today's genomes. Different sets of metrics are used to identify genomic regions that have undergone selection. However, there are fewer methods capable of pinpointing the allele ultimately responsible for this selection.
View Article and Find Full Text PDFAdvances in genome sequencing have improved our understanding of the genetic basis of human diseases, and thousands of human genes have been associated with different diseases. Recent genomic adaptation at disease genes has not been well characterized. Here, we compare the rate of strong recent adaptation in the form of selective sweeps between mendelian, non-infectious disease genes and non-disease genes across distinct human populations from the 1000 Genomes Project.
View Article and Find Full Text PDFDrosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D.
View Article and Find Full Text PDFThe McDonald and Kreitman test (MKT) is one of the most powerful and widely used methods to detect and quantify recurrent natural selection using DNA sequence data. Here we present iMKT (acronym for integrative McDonald and Kreitman test), a novel web-based service performing four distinct MKT types. It allows the detection and estimation of four different selection regimes -adaptive, neutral, strongly deleterious and weakly deleterious- acting on any genomic sequence.
View Article and Find Full Text PDFSince the migrations that led humans to colonize Earth, our species has faced frequent adaptive challenges that have left signatures in the landscape of genetic variation and that we can identify in our today's genomes. Here, we (i) perform an outlier approach on eight different population genetic statistics for 22 non-admixed human populations of the Phase III of the 1000 Genomes Project to detect selective sweeps at different historical ages, as well as events of recurrent positive selection in the human lineage; and (ii) create PopHumanScan, an online catalog that compiles and annotates all candidate regions under selection to facilitate their validation and thoroughly analysis. Well-known examples of human genetic adaptation published elsewhere are included in the catalog, as well as hundreds of other attractive candidates that will require further investigation.
View Article and Find Full Text PDF