Publications by authors named "Jesus M De la Fuente"

In this work, we report the disruptive use of membrane-localized magnetic hyperthermia to promote the internalization of cell-impermeant probes. Under an alternating magnetic field, magnetic nanoparticles (MNPs) immobilized on the cell membrane bioorthogonal click chemistry act as nanoheaters and lead to the thermal disruption of the plasma membrane, which can be used for internalization of different types of molecules, such as small fluorescent probes and nucleic acids. Noteworthily, no cell death, oxidative stress and alterations of the cell cycle are detected after the thermal stimulus, although cells are able to sense and respond to the thermal stimulus through the expression of different types of heat shock proteins (HSPs).

View Article and Find Full Text PDF

In recent years, the scientific community has tried to address the treatment of complex diseases such as cancer in a more appropriate and promising way. Regarding this and benefiting from the unique optical properties of gold nanoprisms (AuNPRs), the physicochemical properties of thermosensitive liposomes (TSLs), and the tunable drug encapsulation and release properties of silica nanoparticles (BioSi@NPs), this study has developed two nanoformulations. These nanoformulations have the potential to integrate chemotherapy and photothermal therapy within a single entity.

View Article and Find Full Text PDF

In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit.

View Article and Find Full Text PDF

Polypyrimidine sequences can be targeted by antiparallel clamps forming triplex structures either for biosensing or therapeutic purposes. Despite its successful implementation, their biophysical properties remain to be elusive. In this work, PAGE, circular dichroism and multivariate analysis were used to evaluate the properties of PPRHs directed to SARS-CoV-2 genome.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles have hogged the limelight in different fields of nanotechnology. Surprisingly, notwithstanding the prominent role played as agents in magnetic hyperthermia treatments, the effects of nanoparticle size and shape on the magnetic hyperthermia performance have not been entirely elucidated yet. Here, spherical or cubical magnetic nanoparticles synthesized by a thermal decomposition method with the same magnetic and hyperthermia properties are evaluated.

View Article and Find Full Text PDF

Oriented and covalent immobilization of proteins on magnetic nanoparticles (MNPs) is particularly challenging as it requires both the functionality of the protein and the colloidal stability of the MNPs to be preserved. Here, we describe a simple, straightforward, and efficient strategy for MNP functionalization with proteins using metal affinity binding. Our method involves a single-step process where MNPs are functionalized using a preformed, ready-to-use nitrilotriacetic acid-divalent metal cation (NTA-M) complex and polyethylene glycol (PEG) molecules.

View Article and Find Full Text PDF

Gastric cancer (GC) is one of the commonest cancers with high morbidity and mortality in the world. How to realize precise diagnosis and therapy of GC owns great clinical requirement. In recent years, artificial intelligence (AI) has been actively explored to apply to early diagnosis and treatment and prognosis of gastric carcinoma.

View Article and Find Full Text PDF

Nanozymes with inherent enzyme-mimicking catalytic properties combat malignant tumor progression via catalytic therapy, while the therapeutic efficacy still needs to be improved. In this work, ultrasmall platinum nanozymes (nPt) in a confined domain of a wormlike pore channel in gold nanobipyramidal-mesoporous silica dioxide nanocomposites, producing nanozyme carriers AP-mSi with photoenhanced peroxidase ability, are innovatively synthesized. Afterward, based on the prepared AP-mSi, a lung-cancer nanozymes probe (AP-HAI) is ingeniously produced by removing the SiO template, modifying human serum albumin, and loading atovaquone molecules (ATO) as well as IR780.

View Article and Find Full Text PDF

Herein, we have developed nanohybrids (nHs) to remotely activate a therapeutic enzyme for its use in Directed Enzyme Prodrug Therapy (DEPT). The coencapsulation of magnetic nanoparticles (MNPs) with horseradish peroxidase (HRP) using biomimetic silica as an entrapment matrix was optimized to obtain nanosized hybrids (∼150 nm) for remote activation of the therapeutic enzyme. HRP converts indole-3-acetic acid (3IAA) into peroxylated radicals, whereas MNPs respond to alternating magnetic fields (AMFs) becoming local hotspots.

View Article and Find Full Text PDF

The combination drug regimens that have long been used to treat tuberculosis (TB), caused by , are fraught with problems such as frequent administration, long duration of treatment, and harsh adverse effects, leading to the emergence of multidrug resistance. Moreover, there is no effective preventive vaccine against TB infection. In this context, nanoparticles (NPs) have emerged as a potential alternative method for drug delivery.

View Article and Find Full Text PDF

Breast cancer accounts for up to 10% of the newly diagnosed cancer cases worldwide, making it the most common cancer found in women. The use of superparamagnetic iron oxide nanoparticles (SPIONs) has been beneficial in the advancement of contrast agents and magnetic hyperthermia (MH) for the diagnosis and treatment of cancers. To achieve delivery of SPIONs to cancer cells, surface functionalization with specific ligands are required.

View Article and Find Full Text PDF

In this work, we report the use of bioorthogonal chemistry, specifically the strain-promoted click azide-alkyne cycloaddition (SPAAC) for the covalent attachment of magnetic nanoparticles (MNPs) on living cell membranes. Four types of MNPs were prepared, functionalized with two different stabilizing/passivation agents (a polyethylene glycol derivative and a glucopyranoside derivative, respectively) and two types of strained alkynes with different reactivities: a cyclooctyne (CO) derivative and a dibenzocyclooctyne (DBCO) derivative. The MNPs were extensively characterized in terms of physicochemical characteristics, colloidal stability, and click reactivity in suspension.

View Article and Find Full Text PDF

The increasing resistance of pathogenic microorganisms against common treatments requires innovative concepts to prevent infection and avoid long-term microbe viability on commonly used surfaces. Here, we report the preparation of a hybrid antimicrobial material based on the combination of microbiocidal polyoxometalate-ionic liquids (POM-ILs) and a biocompatible polymeric support, which enables the development of surface coatings that prevent microbial adhesion. The composite material is based on an antibacterial and antifungal room-temperature POM-IL composed of guanidinium cations (,,','-tetramethyl-″, ″-dioctylguanidinum) combined with lacunary Keggin-type polyoxotungstate anions, [α-SiWO].

View Article and Find Full Text PDF

Developing artificial metalloenzymes that possess a superior performance to their natural counterparts is an attractive concept. Polyoxometalates (POMs) are a class of anionic molecular metal-oxides with excellent redox properties and bioactivity. We have recently introduced "POMlymers" - covalently conjugated POM-peptide hybrid materials - where the polypeptide chain is obtained through a ring-opening polymerisation (ROP) of α-amino acid -carboxyanhydrides (NCA) on an inorganic POM scaffold.

View Article and Find Full Text PDF

The development of nanoplatforms prepared to perform both multimodal imaging and combined therapies in a single entity is a fast-growing field. These systems are able to improve diagnostic accuracy and therapy success. Multicomponent Nanoparticles (MCNPs), composed of iron oxide and gold, offer new opportunities for Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) diagnosis, as well as combined therapies based on Magnetic Hyperthermia (MH) and Photothermal Therapy (PT).

View Article and Find Full Text PDF

The simultaneous detection and quantification of several iron-containing species in biological matrices is a challenging issue. Especially in the frame of studies using magnetic nanoparticles for biomedical applications, no gold-standard technique has been described yet and combinations of different techniques are generally used. In this work, AC magnetic susceptibility measurements are used to analyze different organs from an animal model that received a single intratumor administration of magnetic nanoparticles.

View Article and Find Full Text PDF

Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases.

View Article and Find Full Text PDF

Photoembossing is a powerful photolithographic technique to prepare surface relief structures relying on polymerization-induced diffusion in a solventless development step. Conveniently, surface patterns are formed by two or more interfering laser beams without the need for a lithographic mask. The use of nanosecond pulsed light-based interference lithography strengthens the pattern resolution through the absence of vibrational line pattern distortions.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) are well-known contrast agents for MRI for a wide range of sizes and shapes. Their use as theranostic agents requires a better understanding of their magnetic hyperthermia properties and also the design of a biocompatible coating ensuring their stealth and a good biodistribution to allow targeting of specific diseases. Here, biocompatible IONPs of two different shapes (spherical and octopod) were designed and tested and to evaluate their abilities as high-end theranostic agents.

View Article and Find Full Text PDF

Objective: Although great progress has been made in the field of siRNA gene therapy, safe, efficient, and targeted delivery of siRNA are still major challenges in siRNA therapeutics.

Methods: We developed an up-conversion nanoparticle-based nanocage system. This system protected the siRNA from being degraded by nucleases in organisms and selectively delivered the siRNAs to the tumor sites, due to modifications of targeted molecules on the surfaces of nanocages and local inhalation.

View Article and Find Full Text PDF

The contactless heating capacity of magnetic nanoparticles (MNPs) has been exploited in fields such as hyperthermia cancer therapy, catalysis, and enzymatic thermal regulation. Herein, we propose an advanced technology to generate multiple local temperatures in a single-pot reactor by exploiting the unique nanoheating features of iron oxide MNPs exposed to alternating magnetic fields (AMFs). The heating power of the MNPs depends on their magnetic features but also on the intensity and frequency conditions of the AMF.

View Article and Find Full Text PDF

The exploitation of silver nanoparticles (AgNPs) in biomedicine represents more than one third of their overall application. Despite their wide use and significant amount of scientific data on their effects on biological systems, detailed insight into their in vivo fate is still lacking. This study aimed to elucidate the biotransformation patterns of AgNPs following oral administration.

View Article and Find Full Text PDF

Adenoviral (Ad) vectors have proven to be important tools for gene and cell therapy, although some issues still need to be addressed, such as undesired interactions with blood components and off-target sequestration that ultimately hamper efficacy. In the past years, several organic and inorganic materials have been developed to reduce immunogenicity and improve biodistribution of Ad vectors. Here we investigated the influence of the functionalization of 14 nm PEGylated gold nanoparticles (AuNPs) with quaternary ammonium groups and an arginine-glycine-aspartic acid (RGD)-motif on the uptake and biodistribution of Ad vectors.

View Article and Find Full Text PDF

Highlights: MnO@Ce6 nanoprobes-loaded-iPS cells (iPS-MnO@Ce6) were developed for enhanced photodynamic and immunotherapy against cancer. Under the guidance of multi-mode real-time imaging, iPS-MnO@Ce6 achieved an enhanced photodynamic therapeutic effect and stimulated a strong anti-tumor immune response in the tumor-bearing mouse.

Abstract: How to trigger strong anti-tumor immune responses has become a focus for tumor therapy.

View Article and Find Full Text PDF

Exposure of nanomaterials (NMs) to biological medium results in their direct interaction with biomolecules and the formation of a dynamic biomolecular layer known as the biomolecular corona. Despite numerous published data on nano-biointeractions, the role of protein glycosylation in the formation, characteristics, and fate of such nano-biocomplexes has been almost completely neglected, although most serum proteins are glycosylated. This study aimed to systematically investigate the differences in interaction of metallic NPs with glycosylated vs nonglycosylated transferrin.

View Article and Find Full Text PDF