The minimum time search in uncertain domains is a searching task, which appears in real world problems such as natural disasters and sea rescue operations, where a target has to be found, as soon as possible, by a set of sensor-equipped searchers. The automation of this task, where the time to detect the target is critical, can be achieved by new probabilistic techniques that directly minimize the Expected Time (ET) to detect a dynamic target using the observation probability models and actual observations collected by the sensors on board the searchers. The selected technique, described in algorithmic form in this paper for completeness, has only been previously partially tested with an ideal binary detection model, in spite of being designed to deal with complex non-linear/non-differential sensorial models.
View Article and Find Full Text PDFThis paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches.
View Article and Find Full Text PDFWe present a novel strategy for computing disparity maps from hemispherical stereo images obtained with fish-eye lenses in forest environments. At a first segmentation stage, the method identifies textures of interest to be either matched or discarded. This is achieved by applying a pattern recognition strategy based on the combination of two classifiers: Fuzzy Clustering and Bayesian.
View Article and Find Full Text PDFThis paper describes a novel feature-based stereovision matching process based on a pair of omnidirectional images in forest stands acquired with a stereovision sensor equipped with fish-eye lenses. The stereo analysis problem consists of the following steps: image acquisition, camera modelling, feature extraction, image matching and depth determination. Once the depths of significant points on the trees are obtained, the growing stock volume can be estimated by considering the geometrical camera modelling, which is the final goal.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
August 2004
This paper outlines a method for solving the stereovision matching problem using edge segments as the primitives. In stereovision matching, the following constraints are commonly used: epipolar, similarity, smoothness, ordering, and uniqueness. We propose a new strategy in which such constraints are sequentially combined.
View Article and Find Full Text PDF