Publications by authors named "Jesus Huerta-Chua"

Natural sources of green energy include sunshine, water, biomass, geothermal heat, and wind. These energies are alternate forms of electrical energy that do not rely on fossil fuels. Green energy is environmentally benign, as it avoids the generation of greenhouse gases and pollutants.

View Article and Find Full Text PDF

Achieving the smart motion of any autonomous or semi-autonomous robot requires an efficient algorithm to determine a feasible collision-free path. In this paper, a novel collision-free path homotopy-based path-planning algorithm applied to planar robotic arms is presented. The algorithm utilizes homotopy continuation methods (HCMs) to solve the non-linear algebraic equations system (NAES) that models the robot's workspace.

View Article and Find Full Text PDF

The applicability of the path planning strategy to robotic manipulators has been an exciting topic for researchers in the last few decades due to the large demand in the industrial sector and its enormous potential development for space, surgical, and pharmaceutical applications. The automation of high-degree-of-freedom (DOF) manipulator robots is a challenging task due to the high redundancy in the end-effector position. Additionally, in the presence of obstacles in the workspace, the task becomes even more complicated.

View Article and Find Full Text PDF

The ability to plan a multiple-target path that goes through places considered important is desirable for autonomous mobile robots that perform tasks in industrial environments. This characteristic is necessary for inspection robots that monitor the critical conditions of sectors in thermal, nuclear, and hydropower plants. This ability is also useful for applications such as service at home, victim rescue, museum guidance, land mine detection, and so forth.

View Article and Find Full Text PDF

This work presents the novel Leal-polynomials (LP) for the approximation of nonlinear differential equations of different kind. The main characteristic of LPs is that they satisfy multiple expansion points and its derivatives as a mechanism to replicate behaviour of the nonlinear problem, giving more accuracy within the region of interest. Therefore, the main contribution of this work is that LP satisfies the successive derivatives in some specific points, resulting more accurate polynomials than Taylor expansion does for the same degree of their respective polynomials.

View Article and Find Full Text PDF

This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we show the effectiveness of the proposed method.

View Article and Find Full Text PDF

Unlabelled: This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic problem.

View Article and Find Full Text PDF

This article proposes Laplace Transform Homotopy Perturbation Method (LT-HPM) to find an approximate solution for the problem of an axisymmetric Newtonian fluid squeezed between two large parallel plates. After comparing figures between approximate and exact solutions, we will see that the proposed solutions besides of handy, are highly accurate and therefore LT-HPM is extremely efficient.

View Article and Find Full Text PDF

Abstract: In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity.

View Article and Find Full Text PDF