Over the last decades, novel therapeutic tools for osteochondral regeneration have arisen from the combination of mesenchymal stromal cells (MSCs) and highly specialized smart biomaterials, such as hydrogel-forming elastin-like recombinamers (ELRs), which could serve as cell-carriers. Herein, we evaluate the delivery of xenogeneic human MSCs (hMSCs) within an injectable ELR-based hydrogel carrier for osteochondral regeneration in rabbits. First, a critical-size osteochondral defect was created in the femora of the animals and subsequently filled with the ELR-based hydrogel alone or with embedded hMSCs.
View Article and Find Full Text PDFBackground: Bone loss, in malignant or non-malignant diseases, is caused by increased osteoclast resorption and/or reduced osteoblast bone formation, and is commonly associated with skeletal complications. Thus, there is a need to identify new agents capable of influencing bone remodeling. We aimed to further pre-clinically evaluate the effects of dasatinib (BMS-354825), a multitargeted tyrosine kinase inhibitor, on osteoblast and osteoclast differentiation and function.
View Article and Find Full Text PDFStudy Design: To identify mesenchymal stromal cells (MSC) from degenerate human nucleus pulposus (NP) and compare them with bone marrow (BM) MSC.
Objective: To test whether MSC obtained from NP and BM from the same subjects share similar biologic characteristics.
Summary Of Background Data: Recent studies have proposed biologic strategies for the treatment of intervertebral disc degeneration, including cell therapy.
Background Aims: The aim of this study was to compare prospectively the vasculogenic capacity of two cell sources, monocytes and CD133+ cells.
Methods: Cells were obtained from healthy donors by adherence or magnetic selection. Animals studies were performed in a model of hind limb ischemia and different groups were established according to type and number of cells infused.
To address a number of questions regarding the experimental use of bone marrow (BM) stem cells in hindlimb ischemia, including which is the best cell type (e.g., purified hematopoietic stem cell or monocytes), the best route of delivery [intramuscular (IM) or intravenous (IV)], and the mechanism of action (transdifferentiation or paracrine effects), we have compared the neovascularization capacities of CD133(+) stem cells and monocytes (CD11b(+)) from the BM of Tie2-GFP mice either via IV or IM in a murine severe hindlimb ischemia model.
View Article and Find Full Text PDFTrabecular bone fragments from femoral heads are sometimes used as bone grafts and have been described as a source of mesenchymal progenitor cells. Nevertheless, mesenchymal stromal cells (MSC) from trabecular bone have not been directly compared with MSC obtained under standard conditions from iliac crest aspiration of the same patients. This is the ideal control to avoid inter-individual variation.
View Article and Find Full Text PDFThe connections of the main olfactory bulb (OB) of the mouse were studied with iontophoretic injections of biotinylated dextran amine. To sort efferences from mitral cells and tufted cells, the Purkinje cell degeneration (PCD) mouse was used. This mutant animal undergoes a specific neurodegeneration of mitral cells, whereas tufted cells do not degenerate.
View Article and Find Full Text PDFThe distribution of vasoactive intestinal polypeptide (VIP)-immunopositive elements was analyzed in the olfactory bulb (OB) of the Western European hedgehog (Erinaceus europaeus) under light and electron microscopy. The immunoreactivity appeared in an abundant population of periglomerular cells of the glomerular layer, in interneurons of the external plexiform layer, and in a restricted group of deep short-axon cells of the internal plexiform layer, the granule cell layer and the white matter. In the glomerular layer, VIP-containing periglomerular cells constituted a population of non-GABAergic neurons and did not receive synapses from olfactory axons.
View Article and Find Full Text PDF