In this article we address two related issues on the learning of probabilistic sequences of events. First, which features make the sequence of events generated by a stochastic chain more difficult to predict. Second, how to model the procedures employed by different learners to identify the structure of sequences of events.
View Article and Find Full Text PDFThis paper extends the concept of metrics based on the Bayesian information criterion (BIC), to achieve strongly consistent estimation of partition Markov models (PMMs). We introduce a set of metrics drawn from the family of model selection criteria known as efficient determination criteria (EDC). This generalization extends the range of options available in BIC for penalizing the number of model parameters.
View Article and Find Full Text PDFActing as a goalkeeper in a video-game, a participant is asked to predict the successive choices of the penalty taker. The sequence of choices of the penalty taker is generated by a stochastic chain with memory of variable length. It has been conjectured that the probability distribution of the response times is a function of the specific sequence of past choices governing the algorithm used by the penalty taker to make his choice at each step.
View Article and Find Full Text PDFWith tools originating from Markov processes, we investigate the similarities and differences between genomic sequences in format coming from four variants of the SARS-CoV 2 virus, B.1.1.
View Article and Find Full Text PDF