Macromolecular structural determination by Electron Microscopy under cryogenic conditions is revolutionizing the field of structural biology, interesting a large community of potential users. Still, the path from raw images to density maps is complex, and sophisticated image processing suites are required in this process, often demanding the installation and understanding of different software packages. Here, we present Scipion Web Tools, a web-based set of tools/workflows derived from the Scipion image processing framework, specially tailored to nonexpert users in need of very precise answers at several key stages of the structural elucidation process.
View Article and Find Full Text PDFMotivation: Complementing structural information with biochemical and biomedical annotations is a powerful approach to explore the biological function of macromolecular complexes. However, currently the compilation of annotations and structural data is a feature only available for those structures that have been released as entries to the Protein Data Bank.
Results: To help researchers in assessing the consistency between structures and biological annotations for structural models not deposited in databases, we present 3DBIONOTES v2.
New instrumentation for cryo electron microscopy (cryoEM) has significantly increased data collection rate as well as data quality, creating bottlenecks at the image processing level. Current image processing model of moving the acquired images from the data source (electron microscope) to desktops or local clusters for processing is encountering many practical limitations. However, computing may also take place in distributed and decentralized environments.
View Article and Find Full Text PDFElectron microscopy (EM) is experiencing a revolution with the advent of a new generation of Direct Electron Detectors, enabling a broad range of large and flexible structures to be resolved well below 1 nm resolution. Although EM techniques are evolving to the point of directly obtaining structural data at near-atomic resolution, for many molecules the attainable resolution might not be enough to propose high-resolution structural models. However, accessing information on atomic coordinates is a necessary step toward a deeper understanding of the molecular mechanisms that allow proteins to perform specific tasks.
View Article and Find Full Text PDFMotivation: In recent years, large-scale studies have been undertaken to describe, at least partially, protein-protein interaction maps, or interactomes, for a number of relevant organisms, including human. However, current interactomes provide a somehow limited picture of the molecular details involving protein interactions, mostly because essential experimental information, especially structural data, is lacking. Indeed, the gap between structural and interactomics information is enlarging and thus, for most interactions, key experimental information is missing.
View Article and Find Full Text PDFSoft X-ray Tomographic (TomoX) microscopy has become a reality in the last years. The resolution range of this technique nicely fits between confocal and electron microscopies and will play a key role in the elucidation of the organization between the molecular and the organelle levels. In fact, it offers the possibility of imaging three-dimensional structures of hydrated biological specimens near their native state without chemical pre-treatment.
View Article and Find Full Text PDFEngene is a versatile, and platform-independent web tool for exploratory analysis of gene expression data that aims at storing, visualizing and processing large sets of gene expression patterns.
View Article and Find Full Text PDF