Publications by authors named "Jesus Chimal-Monroy"

Article Synopsis
  • Precise gene expression regulation is essential for determining cell fate, with DNA methylation acting as a key player by managing how genes are turned on or off during this process.
  • Limb development serves as a model for studying these cell fate decisions, especially in cartilage formation, although its early stages need more exploration regarding epigenetic controls.
  • This study reveals that disrupting DNA methylation in limb tissues can lead to abnormal digit formation, highlighting its vital role in cell fate determination during early chondrogenesis.
View Article and Find Full Text PDF

Background: Mesenchymal stromal cells (MSCs) are multipotent cell populations obtained from fetal and adult tissues. They share some characteristics with limb bud mesodermal cells such as differentiation potential into osteogenic, chondrogenic, and tenogenic lineages and an embryonic mesodermal origin. Although MSCs differentiate into skeletal-related lineages , they have not been shown to self-organize into complex skeletal structures or connective tissues, as in the limb.

View Article and Find Full Text PDF
Article Synopsis
  • Organ formation starts when cells commit to one of the three germ layers during early embryogenesis, guided by specific gene transcription networks that dictate cell fate and organ development.
  • Organoids can be generated from various stem cells to model this process, resulting in smaller, functional organs that mimic their larger counterparts.
  • The study proposes using the recombinant limb (RL) assay system to develop skeletal elements in organoids, leveraging embryonic signals to enable the formation of complex skeletal structures from stem cells or progenitor cells for enhanced research.
View Article and Find Full Text PDF

Cell differentiation is the fine-tuned process of cell commitment leading to the formation of different specialized cell types during the establishment of developing tissues and organs. This process is actively maintained in adulthood. Cell differentiation is an ongoing process during the development and homeostasis of organs.

View Article and Find Full Text PDF

A multitude of genetic programs is activated during embryonic development that orchestrates cell differentiation to generate an astounding diversity of somatic cells, tissues, and organs. The precise activation of these genetic programs is regulated by morphogens, diffusible molecules that direct cell fate at different thresholds. Understanding how genetic activation coordinates morphogenesis requires the study of local interactions triggered by morphogens during development.

View Article and Find Full Text PDF

The spatiotemporal control of programmed cell death (PCD) plays a significant role in sculpting the limb. In the early avian limb bud, the anterior necrotic zone (ANZ) and the posterior necrotic zone are two cell death regions associated with digit number reduction. In this study, we evaluated the first events triggered by the FGF, BMP, and WNT signaling interactions to initiate cell death in the anterior margin of the limb to establish the ANZ.

View Article and Find Full Text PDF

At early developmental stages, limb bud mesodermal undifferentiated cells are morphologically indistinguishable. Although the identification of several mesodermal skeletal progenitor cell populations has been recognized, in advanced stages of limb development here we identified and characterized the differentiation hierarchy of two new early limb bud subpopulations of skeletal progenitors defined by the differential expression of the SCA-1 marker. Based on tissue localization of the mesenchymal stromal cell-associated markers (MSC-am) CD29, Sca-1, CD44, CD105, CD90, and CD73, we identified, by multiparametric analysis, the presence of cell subpopulations in the limb bud capable of responding to inductive signals differentially, namely, sSca and sSca cells.

View Article and Find Full Text PDF

During limb development, skeletal tissues differentiate from their progenitor cells in an orchestrated manner. Mesenchymal stromal cells (MSCs), which are considered to be adult undifferentiated/progenitor cells, have traditionally been identified by the expression of MSC-associated markers (MSC-am) and their differentiation capacities. However, although MSCs have been isolated from bone marrow and a variety of adult tissues, their developmental origin is poorly understood.

View Article and Find Full Text PDF

Neurogenesis is the process by which new neurons are formed from progenitor cells. The adult nervous system was long considered unable to generate new neurons, especially in mammals. It was not until the 1960s that Joseph Altman and Gopal Das, using H-thymidine autoradiography to trace newly formed cells, that the first suggestions of new neurons added to the olfactory bulb and the dentate gyrus of the rat hippocampus came about.

View Article and Find Full Text PDF

During digit development, the correct balance of chondrogenic signals ensures the recruitment of undifferentiated cells into the cartilage lineage or the maintenance of cells at the undifferentiated stage. WNT/β catenin maintains the pool of progenitor cells, whereas TGFβ signalling promotes cartilage differentiation by inducing Sox9 expression. Moreover, WNT5A promotes the degradation of β catenin during mouse limb development.

View Article and Find Full Text PDF

Cell fusion is a process in which cells unite their membranes and cytoplasm. It is fundamental for sexual reproduction and embryonic development. Among the best-known cell fusion processes during animal development are fertilization, myoblast fusion, osteoclast generation, and vulva formation in .

View Article and Find Full Text PDF

Maria-Elena Torres-Padilla's research is focused on how cell fate arises from a single-cell embryo, the fertilized egg or zygote. After the initial divisions, cell potency becomes restricted, originating the first cell lineage fates. She studies how epigenetic information controls transitions in cell identity and cellular reprogramming during embryonic development.

View Article and Find Full Text PDF

The cell differentiation of the musculoskeletal system is highly coordinated during limb development. In the distal-most region of the limb, WNT and FGF released from the apical ectodermal ridge maintain mesenchymal cells in the undifferentiated stage. Once the cells stop receiving WNT and FGF, they respond to differentiation signals.

View Article and Find Full Text PDF

Metamorphosis is a postembryonic developmental process that involves morphophysiological and behavioral changes, allowing organisms to adapt into a novel environment. In some amphibians, aquatic organisms undergo metamorphosis to adapt in a terrestrial environment. In this process, these organisms experience major changes in their circulatory, respiratory, digestive, excretory and reproductive systems.

View Article and Find Full Text PDF

The formation of the vertebrate skeleton is orchestrated in time and space by a number of gene regulatory networks that specify and position all skeletal tissues. During embryonic development, bones have two distinct origins: bone tissue differentiates directly from mesenchymal progenitors, whereas most long bones arise from cartilaginous templates through a process known as endochondral ossification. Before endochondral bone development takes place, chondrocytes form a cartilage analgen that will be sequentially segmented to form joints; thus, in the cartilage template, either the cartilage maturation programme or the joint formation programme is activated.

View Article and Find Full Text PDF

Chromatin regulation and organization are essential processes that regulate gene activity. The CCCTC-binding factor (CTCF) is a protein with different and important molecular functions related with chromatin dynamics. It is conserved since invertebrates to vertebrates, posing it as a factor with an important role in the physiology.

View Article and Find Full Text PDF

Skeletal progenitors are derived from resident limb bud mesenchymal cells of the vertebrate embryos. However, it remains poorly understood if they represent stem cells, progenitors, or multipotent mesenchymal stromal cells (MSC). Derived-MSC of different adult tissues under in vitro experimental conditions can differentiate into the same cellular lineages that are present in the limb.

View Article and Find Full Text PDF

In tetrapods the digit pattern has evolved to adapt to distinct locomotive strategies. The number of digits varies between species or even between hindlimb and forelimb within the same species. These facts illustrate the plasticity of embryonic limb autopods.

View Article and Find Full Text PDF

Limb amputation in axolotls was performed to obtain data demonstrating that a chemical agonist of Wnt (int-related protein)/β-catenin signalling can have a role in axolotl limb regeneration (Wischin et al., 2017) [1]. The data revealed that active β-catenin protein was present during limb regeneration in some Leydig cells in the epithelium; after the chemical treatment, it was observed in more Leydig cells.

View Article and Find Full Text PDF

Limb regeneration involves several interrelated physiological processes in which a particular signalling pathway may play a variety of functions. Blocking the function of Wnt/β-catenin signalling during limb regeneration inhibits regeneration in axolotls (Ambystoma mexicanum). Limb development shares many features with limb regeneration, and Wnt/β-catenin activation has different effects depending on the developmental stage.

View Article and Find Full Text PDF

Human and porcine cysticercosis is caused by the larval stage of the flatworm Taenia solium (Cestoda). Infestation of the human brain, also known as neurocysticercosis, is the most common parasite disease of the central nervous system worldwide. Significant advances in the understanding of the disease have been achieved using the Taenia crassiceps murine model.

View Article and Find Full Text PDF

Background: To compare the expression of receptivity markers in epithelial and stromal cells in the endometrium of ovulatory women and infertile with hypothalamic pituitary dysfunction (HPD), untreated or treated with clomiphene citrate (CC), or with recombinant follicle stimulating hormone (rFSH).

Methods: Twelve control ovulatory and 32 anovulatory women, 22 of whom received ovulation induction with CC (n = 12) or rFSH (n = 10). Endometrial biopsies were obtained during the mid-secretory phase.

View Article and Find Full Text PDF

Background: Type 2D limb-girdle muscular dystrophy (LGM2D) is a progressive disorder caused by mutations in the alpha sarcoglycan (α-SG) gene. In mice, the α-SG gene contains two promoters that regulate the expression of two different mRNAs (A and B). However, their gene expression pattern during embryonic development has not been explored and their regulation by myogenic and cardiogenic transcription factors has been only partially studied.

View Article and Find Full Text PDF

The anuran amphibian Xenopus laevis can regenerate its limbs for a limited time during the larval stage, while limbs are still developing. Using this regeneration model, we evaluated the proximo-distal blastema cell identity when endogenous retinoids were increased by CYP26 inhibition or when RAR-specific agonists altered RA signaling. Simultaneous proximo-distal and antero-posterior limb duplications were generated, and the RAR-specific agonist can modify blastema identity after amputation, because chemical activation of RARβ produced bilateral hindlimb duplications that resulted in a drastic duplication phenotype of regenerating limbs.

View Article and Find Full Text PDF

The Iroquois homeobox (Irx) genes play a crucial role in the regionalization and patterning of tissues and organs during metazoan development. The Irx1 and Irx2 gene expression pattern during hindlimb development has been investigated in different species, but its regulation during hindlimb morphogenesis has not been explored yet. The aim of this study was to evaluate the gene expression pattern of Irx1 and Irx2 as well as their regulation by important regulators of hindlimb development such as retinoic acid (RA), transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signaling during chick hindlimb development.

View Article and Find Full Text PDF