Publications by authors named "Jesus Ayala-Sanmartin"

Annexin A2 (AnxA2) is a calcium- and phospholipid-binding protein that plays roles in cellular processes involving membrane and cytoskeleton dynamics and is able to associate to several partner proteins. However, the principal molecular partners of AnxA2 are negatively charged phospholipids such as phosphatidylserine and phosphatidyl-inositol-(4,5)-phosphate. Herein we have studied different aspects of membrane lipid rearrangements induced by AnxA2 membrane binding.

View Article and Find Full Text PDF

The members of the annexin family of calcium- and phospholipid-binding proteins participate in different cellular processes. Annexin A2 binds to S100A10, forming a functional heterotetrameric protein that has been involved in many cellular functions, such as exocytosis, endocytosis, cell junction formation, and actin cytoskeleton dynamics. Herein, we studied annexin A2 cellular movements and looked for its partners during epithelial cell differentiation.

View Article and Find Full Text PDF

Cell penetrating peptides (CPPs) are able to transport hydrophilic molecules inside cells. To reach the cytosol, the peptide associated with a cargo must cross the plasma or the endosomal membrane. Different molecular mechanisms for peptide internalisation into cells have been proposed and it is becoming clear that the cellular internalisation mechanisms are different depending on the peptide sequence and structure and the target membrane.

View Article and Find Full Text PDF

Biological membranes contain a large variety of lipids species compartmentalized in different domains heterogeneous in size, composition and dynamics. Cholesterol induces membrane ordered domains thanks to its affinity for saturated lipids. Membrane domains had been studied with fluorescent probes either linked to phospholipids and proteins or as individual fluorophore.

View Article and Find Full Text PDF

Cell penetrating peptides are promising vectors for molecular drug delivery in eukaryotic cells. Despite of their discovery 20years ago, the mechanisms of peptide membrane crossing are still controversial. The different suggested penetration mechanisms reflect the high sequence and structural diversity of cell penetrating peptides.

View Article and Find Full Text PDF

Background And Purpose: Annexin A6 (AnxA6) is a calcium-dependent phospholipid-binding protein that can be recruited to the plasma membrane to function as a scaffolding protein to regulate signal complex formation, endo- and exocytic pathways as well as distribution of cellular cholesterol. Here, we have investigated how AnxA6 influences the membrane order.

Experimental Approach: We used Laurdan and di-4-ANEPPDHQ staining in (i) artificial membranes; (ii) live cells to investigate membrane packing and ordered lipid phases; and (iii) a super-resolution imaging (photoactivated localization microscopy, PALM) and Ripley's K second-order point pattern analysis approach to assess how AnxA6 regulates plasma membrane order domains and protein clustering.

View Article and Find Full Text PDF

Basic cell penetrating peptides are tools for molecular cellular internalization of nonmembrane permeable molecules. Their uptake mechanisms involve energy-dependent and energy-independent pathways such as endocytosis, direct translocation or physical endocytosis. These mechanisms are ruled by both, the peptides physicochemical properties and structure and by the membrane lipids characteristics and organization.

View Article and Find Full Text PDF

Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface.

View Article and Find Full Text PDF

Annexin A2 (AnxA2) is a phospholipid binding protein that has been implicated in many membrane-related cellular functions. AnxA2 is able to bind different acidic phospholipids such as phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PI2P). This binding is mediated by Ca(2+)-dependent and Ca(2+)-independent mechanisms.

View Article and Find Full Text PDF

EPEC (enteropathogenic Escherichia coli) and EHEC (enterohaemorrhagic Escherichia coli) are attaching and effacing pathogens frequently associated with infectious diarrhoea. EPEC and EHEC use a T3SS (type III secretion system) to translocate effectors that subvert different cellular processes to sustain colonization and multiplication. The eukaryotic proteins NHERF2 (Na(+)/H(+) exchanger regulatory factor 2) and AnxA2 (annexin A2), which are involved in regulation of intestinal ion channels, are recruited to the bacterial attachment sites.

View Article and Find Full Text PDF

Cellular uptake of vector peptides used for internalization of hydrophilic molecules into cells is known to follow two different pathways: direct translocation of the plasma membrane and internalization by endocytosis followed by release into the cytosol. These pathways differ in their energy dependence. The first does not need metabolic energy while the second requires metabolic energy.

View Article and Find Full Text PDF

Background: Penetratin is a protein transduction domain derived from the homeoprotein Antennapedia. Thereby it is currently used as a cell penetrating peptide to introduce diverse molecules into eukaryotic cells, and it could also be involved in the cellular export of transcription factors. Moreover, it has been shown that it is able to act as an antimicrobial agent.

View Article and Find Full Text PDF

Annexin 2, a member of the annexin family of Ca2+-dependent membrane binding proteins is found in monomeric and heterotetrameric forms and has been involved in different membrane related functions. The heterotetrameric annexin 2 is composed of a dimer of S100A10, a member of the S100 family of Ca2+ binding proteins and two annexin 2 molecules ((Anx2-S100A10)2). Different molecular models including tetramers and octamers in which S100A10 is localized in the centre of the complex with the annexin 2 molecules positioned around S100A10 had been proposed.

View Article and Find Full Text PDF

Protein membrane transduction domains are able to translocate through cell membranes. This capacity resulted in new concepts on cell communication and in the design of vectors for internalization of active molecules into cells. Penetratin crosses the plasma membrane by a receptor and metabolic energy-independent mechanism which is at present unknown.

View Article and Find Full Text PDF

The antiinflammatory protein annexin-1 (ANXA1) and the adaptor S100A10 (p11), inhibit cytosolic phospholipase A2 (cPLA2alpha) by direct interaction. Since the latter is responsible for the cleavage of arachidonic acid at membrane phospholipids, all three proteins modulate eicosanoid production. We have previously shown the association of ANXA1 expression with that of CFTR, the multifactorial protein mutated in cystic fibrosis.

View Article and Find Full Text PDF

The delivery of active molecules into cells requires the efficient translocation of the plasma membrane barrier. Penetratin is a promising cell penetrating peptide is which crosses the cell membrane by a receptor and metabolic energy-independent mechanism. In previous work, we have shown that basic peptides induce membrane invaginations (i.

View Article and Find Full Text PDF

Dermaseptin B2 (Drs B2) is a 33-residue-long cationic, alpha-helical antimicrobial peptide endowed with membrane-damaging activity against a broad spectrum of microorganisms, including bacteria, yeasts, fungi, and protozoa, but its precise mechanism of action remained ill-defined. A detailed characterization of peptide-membrane interactions of Drs B2 was undertaken in comparison with a C-terminal truncated analogue, [1-23]-Drs B2, that was virtually inactive on bacteria despite retaining the cationic charge of the full-length peptide. Both peptides were tested on living cells using membrane permeabilization assays and on large unilamellar and multilamellar phospholipid vesicles composed of binary lipid mixtures by dye leakage assay, fluorescence spectroscopy, circular dichroism, and differential scanning calorimetry and also on SDS micelles using NMR spectroscopy.

View Article and Find Full Text PDF

Annexin A2 (AnxA2) is a Ca(2+)- and acidic phospholipid-binding protein involved in many cellular processes. It undergoes Ca(2+)-mediated membrane bridging at neutral pH and has been demonstrated to be involved in an H(+)-mediated mechanism leading to a novel AnxA2-membrane complex structure. We used fluorescence techniques to characterize this H(+)-dependent mechanism at the molecular level; in particular, the involvement of the AnxA2 N-terminal domain.

View Article and Find Full Text PDF

Background: Protein membrane transduction domains that are able to cross the plasma membrane are present in several transcription factors, such as the homeodomain proteins and the viral proteins such as Tat of HIV-1. Their discovery resulted in both new concepts on the cell communication during development, and the conception of cell penetrating peptide vectors for internalisation of active molecules into cells. A promising cell penetrating peptide is Penetratin, which crosses the cell membranes by a receptor and metabolic energy-independent mechanism.

View Article and Find Full Text PDF

Annexin A2 (AnxA2) is a Ca(2+)- and phospholipid-binding protein involved in many cellular regulatory processes. Like other annexins, it is constituted by two domains: a conserved core, containing the Ca(2+) binding sites, and a variable N-terminal segment, containing sites for interactions with other protein partners like S100A10 (p11). A wealth of data exists on the structure and dynamics of the core, but little is known about the N-terminal domain especially in the Ca(2+)-induced membrane-bridging process.

View Article and Find Full Text PDF

Peptide-membrane interaction is the first step required for peptide cell internalization. In this paper we studied the interactions of substance P, Penetratin and an amphiphilic 16mer (RL16) peptide in two different model membranes, giant unilamellar vesicles and large unilamellar vesicles. Penetratin was able to induce the formation of tubes inside the giant vesicles without changes in membrane permeability.

View Article and Find Full Text PDF

Background: Basic cell-penetrating peptides are potential vectors for therapeutic molecules and display antimicrobial activity. The peptide-membrane contact is the first step of the sequential processes leading to peptide internalization and cell activity. However, the molecular mechanisms involved in peptide-membrane interaction are not well understood and are frequently controversial.

View Article and Find Full Text PDF

Cytoplasmic phospholipase A2 (cPLA2) has a key role in prostaglandin production. The role of cPLA2 in intestinal tumorigenesis has been suggested, however, contradictory data are found in the literature. We evaluated cPLA2 and cyclooxygenase-2 (COX-2) protein expression in 65 colon carcinomas by immunohistochemistry, and in eight colorectal cancer cell lines by Western Blot.

View Article and Find Full Text PDF

Annexin 2 is a Ca(2+)-binding protein that has an essential role in actin-dependent macropinosome motility. We show here that macropinosome rocketing can be induced by hyperosmotic shock, either alone or synergistically when combined with phorbol ester or pervanadate. Rocketing was blocked by inhibitors of phosphatidylinositol-3-kinase(s), p38 mitogen-activated protein (MAP) kinase, and calcium, suggesting the involvement of phosphoinositide signaling.

View Article and Find Full Text PDF

Annexin 2 belongs to the annexin family of proteins that bind to phospholipid membranes in a Ca(2+)-dependent manner. Here we show that, under mild acidic conditions, annexin 2 binds to and aggregates membranes containing anionic phospholipids, a fact that questions the mechanism of its interaction with membranes via Ca(2+) bridges only. The H(+) sensitivity of annexin 2-mediated aggregation is modulated by lipid composition (i.

View Article and Find Full Text PDF