Publications by authors named "Jesus Aguirre Gutierrez"

Tropical forests dominate terrestrial photosynthesis, yet there are major contradictions in our understanding due to a lack of field studies, especially outside the tropical Americas. A recent field study indicated that West African forests have among the highest forests gross primary productivity (GPP) yet observed, contradicting models that rank them lower than Amazonian forests. Here, we show possible reasons for this data-model mismatch.

View Article and Find Full Text PDF

Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species' population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate 'intactness scores': the remaining proportion of an 'intact' reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region's major land uses (urban, cropland, rangeland, plantation, protected, etc.

View Article and Find Full Text PDF

Land-based carbon sequestration projects, such as tree planting, are a prominent strategy to offset carbon emissions. However, we risk reducing natural ecosystems to one metric - carbon. Emphasis on restoring ecosystems to balance ecosystem services, biodiversity conservation, and carbon sequestration is a more appropriate strategy to protect their functioning.

View Article and Find Full Text PDF
Article Synopsis
  • The latitudinal diversity gradient (LDG) reflects a global trend showing that species richness typically increases towards the tropics, but understanding its causes has been challenging due to insufficient data.
  • A new high-resolution map of local tree species richness was created using extensive global forest inventory data and local biophysical factors, analyzing around 1.3 million sample plots.
  • Findings indicate that annual mean temperature is a significant predictor of tree species richness, aligning with the metabolic theory of biodiversity, but additional local factors also play a crucial role, especially in tropical regions.
View Article and Find Full Text PDF
Article Synopsis
  • Tree mortality in tropical regions is accelerating, which could significantly impact the global carbon budget and efforts to limit warming to below 2°C.
  • A study spanning 49 years in Australian moist tropics shows that tree mortality risk has doubled over the last 35 years, indicating trees are living shorter lives and storing less carbon.
  • Environmental factors like increased atmospheric water stress, linked to global warming, may be driving this mortality, with certain tree species more vulnerable based on their water stress thresholds.
View Article and Find Full Text PDF

Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forests' functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century.

View Article and Find Full Text PDF

Background: The accuracy of predictions of invasive species ranges is dependent on niche similarity between invasive and native populations and on our ability to identify the niche characteristics. With this work we aimed to compare the niche dynamics of two genetically related invasive populations of (an effective predator of honeybees and wild pollinators), in two distinct climatic regions, one in central Europe and another one in the north-western Iberian Peninsula, and hence to identify uninvaded regions susceptible to invasion.

Methods: Niche dynamics and shifts of were assessed by comparing the environmental niches of the native and of the two invasive populations, using climatic, topographic and land use variables.

View Article and Find Full Text PDF

A better understanding of how climate affects growth in tree species is essential for improved predictions of forest dynamics under climate change. Long-term climate averages (mean climate) drive spatial variations in species' baseline growth rates, whereas deviations from these averages over time (anomalies) can create growth variation around the local baseline. However, the rarity of long-term tree census data spanning climatic gradients has so far limited our understanding of their respective role, especially in tropical systems.

View Article and Find Full Text PDF

Plant-pollinator interactions are highly relevant to society as many crops important for humans are animal pollinated. However, changes in climate and land use may put such interacting patterns at risk by disrupting the occurrences between pollinators and the plants they pollinate. Here, we analyse how the co-occurrence patterns between bat pollinators and 126 plant species they pollinate may be disrupted given changes in climate and land use, and we forecast relevant changes of the current bat-plant co-occurrence distribution patterns for the near future.

View Article and Find Full Text PDF

Tropical ecosystems adapted to high water availability may be highly impacted by climatic changes that increase soil and atmospheric moisture deficits. Many tropical regions are experiencing significant changes in climatic conditions, which may induce strong shifts in taxonomic, functional and phylogenetic diversity of forest communities. However, it remains unclear if and to what extent tropical forests are shifting in these facets of diversity along climatic gradients in response to climate change.

View Article and Find Full Text PDF

Climatic changes have profound effects on the distribution of biodiversity, but untangling the links between climatic change and ecosystem functioning is challenging, particularly in high diversity systems such as tropical forests. Tropical forests may also show different responses to a changing climate, with baseline climatic conditions potentially inducing differences in the strength and timing of responses to droughts. Trait-based approaches provide an opportunity to link functional composition, ecosystem function and environmental changes.

View Article and Find Full Text PDF

The delimitation of the invasive moss species from its closest relative, , has been long debated based on morphology. Previous molecular phylogenetic reconstructions based on the nuclear ribosomal internal transcribed spacers (ITS) 1 and 2 showed that is split into an Old World and a New World lineage, but remained partly inconclusive concerning the relationships between these two clades and . Analyses of an extended ITS dataset displayed statistically supported incongruence between ITS1 and ITS2.

View Article and Find Full Text PDF

In general, plants and arbuscular mycorrhizal (AM) fungi exchange photosynthetically fixed carbon for soil nutrients, but occasionally nonphotosynthetic plants obtain carbon from AM fungi. The interactions of these mycoheterotrophic plants with AM fungi are suggested to be more specialized than those of green plants, although direct comparisons are lacking. We investigated the mycorrhizal interactions of both green and mycoheterotrophic plants.

View Article and Find Full Text PDF

Background and Aims Angiosperms with simple vessel perforations have evolved many times independently of species having scalariform perforations, but detailed studies to understand why these transitions in wood evolution have happened are lacking. We focus on the striking difference in wood anatomy between two closely related genera of Adoxaceae, Viburnum and Sambucus, and link the anatomical divergence with climatic and physiological insights. Methods After performing wood anatomical observations, we used a molecular phylogenetic framework to estimate divergence times for 127 Adoxaceae species.

View Article and Find Full Text PDF

Changes in climate and land use can have important impacts on biodiversity. Species respond to such environmental modifications by adapting to new conditions or by shifting their geographic distributions towards more suitable areas. The latter might be constrained by species' functional traits that influence their ability to move, reproduce or establish.

View Article and Find Full Text PDF

Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model.

View Article and Find Full Text PDF

The invasion of the giant Madagascar day gecko Phelsuma grandis has increased the threats to the four endemic Mauritian day geckos (Phelsuma spp.) that have survived on mainland Mauritius. We had two main aims: (i) to predict the spatial distribution and overlap of P.

View Article and Find Full Text PDF

Insect pollination benefits over three quarters of the world's major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur.

View Article and Find Full Text PDF

Concern about biodiversity loss has led to increased public investment in conservation. Whereas there is a widespread perception that such initiatives have been unsuccessful, there are few quantitative tests of this perception. Here, we evaluate whether rates of biodiversity change have altered in recent decades in three European countries (Great Britain, Netherlands and Belgium) for plants and flower visiting insects.

View Article and Find Full Text PDF

Understanding species distributions and the factors limiting them is an important topic in ecology and conservation, including in nature reserve selection and predicting climate change impacts. While Species Distribution Models (SDM) are the main tool used for these purposes, choosing the best SDM algorithm is not straightforward as these are plentiful and can be applied in many different ways. SDM are used mainly to gain insight in 1) overall species distributions, 2) their past-present-future probability of occurrence and/or 3) to understand their ecological niche limits (also referred to as ecological niche modelling).

View Article and Find Full Text PDF