The applications of magnetic nanoparticles (MNPs) as biocatalysts in different biomedical areas have been evolved very recently. One of the main challenges in this field is to design affective MNPs surfaces with catalytically active atomic centres, while producing minimal toxicological side effects on the hosting cell or tissues. MNPs of vanadium spinel ferrite (VFeO) are a promising material for mimicking the action of natural enzymes in degrading harmful substrates due to the presence of active V centres.
View Article and Find Full Text PDFThis study presents an alternative approach to directly synthesizing magnetite nanoparticles (MNPs) in the presence of , , and derived from natural sources (grapes, blueberries, and pomegranates, respectively). A modified co-precipitation method that combines phytochemical techniques was developed to produce semispherical MNPs that range in size from 7.7 to 8.
View Article and Find Full Text PDFWe developed a fast, single-step sonochemical strategy for the green manufacturing of magnetite (FeO) magnetic nanoparticles (MNPs), using iron sulfate (FeSO) as the sole source of iron and sodium hydroxide (Na(OH)) as the reducing agent in an aqueous medium. The designed methodology reduces the environmental impact of toxic chemical compounds and minimizes the infrastructure requirements and reaction times down to minutes. The Na(OH) concentration has been varied to optimize the final size and magnetic properties of the MNPs and to minimize the amount of corrosive byproducts of the reaction.
View Article and Find Full Text PDF