Publications by authors named "Jesus A Diaz-Real"

Potential drop due to the electrolyte conductivity between the reference electrode (RE) and the working electrode leads to measurement error. Because of the limited amount of electrolyte and constricted geometry in microfluidic systems, the total potential drop in a microfluidic system is confined within a small part of the cell. This makes the choice and placement of the RE an important consideration.

View Article and Find Full Text PDF

This work presents a mechanistic study of the electrochemical synthesis of magnetite nanoparticles (NPs) based on the analysis of the electrochemical impedance spectroscopy (EIS) technique. After a discussion of the mechanisms reported in the literature, three models are devised and a prediction of their EIS spectra is presented. The approach consisted of the simulation of EIS spectra as a tool for assessing model validity, as EIS allows to characterize the relaxation of adsorbed intermediates.

View Article and Find Full Text PDF

Manipulating the atomic structure of semiconductors is a fine way to tune their properties. The rationalization of their modified properties is, however, particularly challenging as defects locally disrupt the long-range structural ordering, and a deeper effort is required to fully describe their structure. In this work, we investigated the photoelectrochemical properties of an anatase-type structure featuring a high content of titanium vacancies stabilized by dual-oxide substitution by fluoride and hydroxide anions.

View Article and Find Full Text PDF

Titanium oxide nanotubes (TNTs) were anodically grown in ethylene glycol electrolyte. The influence of the anodization time on their physicochemical and photoelectrochemical properties was evaluated. Concomitant with the anodization time, the NT length, fluorine content, and capacitance of the space charge region increased, affecting the opto-electronic properties (bandgap, bathochromic shift, band-edge position) and surface hydrophilicity of TiO NTs.

View Article and Find Full Text PDF