The interest in magnetic nanostructures exhibiting perpendicular magnetic anisotropy and exchange bias (EB) effect has increased in recent years owing to their applications in a new generation of spintronic devices that combine several functionalities. We present a nanofabrication process used to induce a significant out-of-plane component of the magnetic easy axis and EB. In this study, 30 nm thick CoO/Co multilayers were deposited on nanostructured alumina templates with a broad range of pore diameters, 34 nm ≤ Dp ≤ 96 nm, maintaining the hexagonal lattice parameter at 107 nm.
View Article and Find Full Text PDFFe-Pd magnetic shape-memory alloys are of major importance for microsystem applications due to their magnetically driven large reversible strains under moderate stresses. In this context, we focus on the synthesis of nanostructured FePd shape-memory alloy antidot array thin films with different layer thicknesses in the range from 20 nm to 80 nm, deposited onto nanostructured alumina membranes. A significant change in the magnetization process of nanostructured samples was detected by varying the layer thickness.
View Article and Find Full Text PDFThe results reported here represent the first direct experimental observations supporting the existence of a solid-to-solid phase transition induced by thermal treatment in magnetic ionic liquids (MILs). The phase transitions of the solid phases of 1,3-dimethylimidazolium tetrachloroferrate, DimimFeCl4, are closely related to its thermal history. Two series of solid-to-solid phase transitions can be described in this MIL: (i) from room temperature (RT) phase II [space group (s.
View Article and Find Full Text PDFCrystalline La and Nd carbonates can be formed from poorly-ordered nanoparticulate precursors, termed amorphous lanthanum carbonate (ALC) and amorphous neodymium carbonate (ANC). When reacted in air or in aqueous solutions these precursors show highly variable lifetimes and crystallization pathways. We have characterized these precursors and the crystallization pathways and products with solid-state, spectroscopic and microscopic techniques to explain the differences in crystallization mechanisms between the La and Nd systems.
View Article and Find Full Text PDFWe present the first magnetic phase of an ionic liquid with anion-π interactions, which displays a three-dimensional (3D) magnetic ordering below the Néel temperature, TN = 7.7 K. In this material, called Dimim[FeBr4], an exhaustive and systematic study involving structural and physical characterization (synchrotron X-ray, neutron powder diffraction, direct current and alternating current magnetic susceptibility, magnetization, heat capacity, Raman and Mössbauer measurements) as well as first-principles analysis (density functional theory (DFT) simulation) was performed.
View Article and Find Full Text PDFSandy loam soil polluted with heavy metals (As, Cu, Pb and Zn) from an ancient Mediterranean Pb mining and metallurgy site was treated by means of wet high-intensity magnetic separation to remove some of the pollutants therein. The treated fractions were chemically analysed and then subjected to magnetic characterisation, which determined the high-field specific (mass), magnetic susceptibility (κ) and the specific (mass) saturation magnetisation (σS), through isothermal remanent magnetisation (IRM) curves. From the specific values of κ and σS, a new expression to assess the performance of the magnetic separation operation was formulated and verified by comparison with the results obtained by traditional chemical analysis.
View Article and Find Full Text PDFA new magnetic ionic liquid (MIL) with 3D antiferromagnetic ordering has been synthetized and characterized. The information obtained from magnetic characterization was supplemented by analysis of DFT calculations and the magneto-structural correlations. The result gives no evidence for direct iron-iron interactions, corroborating that the 3D magnetic ordering in MILs takes place via super-exchange coupling containing two diamagnetic atoms intermediaries.
View Article and Find Full Text PDFRecent investigations in R2Fe17 intermetallic compounds have evidenced that these materials present a moderate magnetocaloric effect (MCE) near room temperature. A series of accurate magnetization measurements was carried out to show that the value of the demagnetizing factor has a significant influence on the absolute MCE value of Er2Fe17. In addition, the critical exponents determined from heat capacity and magnetization measurements allow us to describe the field dependence of the observed MCE around the Curie temperature.
View Article and Find Full Text PDFA novel organic ionic plastic crystal (OIPC) based on a quaternary ammonium cation and a tetrachloroferrate anion has been synthesized with the intention of combining the properties of the ionic plastic crystal and the magnetism originating from the iron incorporated in the anion. The thermal analysis of the obtained OIPC showed a solid-solid phase transition below room temperature and a high melting point above 220 °C, indicating their plastic crystalline behaviour over a wide temperature range, as well as thermal stability up to approximately 200 °C. The magnetization measurements show the presence of three-dimensional antiferromagnetic ordering below 4 K.
View Article and Find Full Text PDFA series of 2D ruthenium-based coordination polymers with hcb-hexagonal topology, {[K(18-crown-6)]3[M(II)3(H2O)4{Ru(ox)3}3]}n (M(II) = Mn (1), Fe (2), Co (3), Cu (4), Zn (5)), has been synthesized through self-assembly reaction. All compounds are isostructural frameworks that crystallize in the monoclinic space group C2/c. The crystal packing consists of a 2D honeycomb-like anionic mixed-metal framework intercalated by [K(18-crown-6)](+) cationic template.
View Article and Find Full Text PDFWe report a combined study using magnetization and Raman spectroscopy on the magnetic ionic liquid 1-ethyl-3-methylimidazolium tetrachloroferrate, Emim[FeCl4]. This material shows a long-range antiferromagnetic ordering below the Néel temperature T(N) ≈ 3.8 K.
View Article and Find Full Text PDFThe solid state exhibits a fascinating variety of phases, which can be stabilized by the variation of external parameters such as temperature, magnetic field and pressure. Until recently, numerical analysis of magnetic and/or orbital phases with collective excitations on a periodic lattice tended to be done on a case-by-case basis. Nowadays dynamical matrix diagonalization (DMD) has become an important and powerful standard method for the calculation of dispersive modes.
View Article and Find Full Text PDFUp to now most of the magnetic ionic liquids containing tetrachloroferrate ion FeCl(4) have evidenced a paramagnetic temperature dependence of the magnetic susceptibility, with only small deviations from the Curie law at low temperatures. However, we report on the physical properties of 1-ethyl-3-methylimidazolium tetrachloroferrate Emim[FeCl(4)], that clearly shows a long-range antiferromagnetic ordering below the Néel temperature T(N)≈3.8 K.
View Article and Find Full Text PDFNanocrystalline Nd(2)Fe(17) powders have been obtained by means of high-energy ball milling from nearly single-phase bulk alloys produced by arc melting and high temperature homogenization annealing. The rhombohedral Th(2)Zn(17)-type crystal structure of the bulk alloy remains unaltered after the milling process, with almost unchanged values for the cell parameters. However, the severe mechanical processing induces drastic microstructural changes.
View Article and Find Full Text PDFWe report unusual cooling field dependence of the exchange bias in oxide-coated cobalt nanoparticles embedded within the nanopores of a carbon matrix. The size-distribution of the nanoparticles and the exchange bias coupling observed up to about 200 K between the Co-oxide shell (∼3-4 nm) and the ferromagnetic Co-cores (∼4-6 nm) are the key to understand the magnetic properties of this system. The estimated values of the effective anisotropy constant and saturation magnetization obtained from the fit of the zero-field cooling and field cooling magnetization vs.
View Article and Find Full Text PDFNH(4)Fe(HPO(4))(2) and its deuterated form have been synthesized as monophasic polycrystalline materials. Their crystal structures, including hydrogen positions, were determined by Rietveld refinement and Fourier synthesis using constant-wavelength neutron powder diffraction data. In addition, the thermal decomposition of NH(4)Fe(HPO(4))(2) was found to give mixtures of Fe(4)(P(2)O(7))(3) and Fe(PO(3))(3)via NH(4)FeP(2)O(7) formation, the crystal structure of which has also been refined from X-ray powder diffraction data.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2010
A systematic analysis of resonant x-ray Bragg diffraction data for UPd(3), with signal enhancement at the U M(IV) edge, including possible structural phase transitions leads to a new determination of the space groups of the material in the phases between T(0)=7.8 K and T(+1)=6.9 K, as P 222(1), and between T(-1)=6.
View Article and Find Full Text PDF