Premise Of The Study: Secondary succession is a worldwide phenomenon affecting plant communities. Studying functional variation during succession aids in understanding the mechanisms through which environmental shifts drive succession. We investigated changes in the functional space occupied by herbaceous communities during succession.
View Article and Find Full Text PDFThe effect of biodiversity on ecosystem functioning has been widely acknowledged, and the importance of the functional roles of species, as well as their diversity, in the control of ecosystem processes has been emphasised recently. However, bridging biodiversity and ecosystem science to address issues at a biogeographic scale is still in its infancy. Bridging this gap is the primary goal of the emerging field of functional biogeography.
View Article and Find Full Text PDFRecent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity--ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness.
View Article and Find Full Text PDFPlant functional traits affect the capacity of herbivores to find, choose, and consume plants. However, in a community composed of different plant species, it is unclear what proportion of herbivory on a focal plant is explained by its own traits and which is explained by the characteristics of the surrounding vegetation (i.e.
View Article and Find Full Text PDFPlant diversity is a key driver of ecosystem functioning best documented for its influence on plant productivity. The strength and direction of plant diversity effects on species interactions across trophic levels are less clear. For example, with respect to the interactions between herbivorous invertebrates and plants, a number of competing hypotheses have been proposed that predict either increasing or decreasing community herbivory with increasing plant species richness.
View Article and Find Full Text PDFInvertebrate herbivores can impact plant performance and plant communities. Conversely, plants can affect the ability of herbivores to find, choose, and consume them through their functional traits. While single plant traits have been related to rates of herbivory, most often involving single herbivore-plant pairs, much less is known about which suite of plant traits is important for determining herbivory for a pool of plant species interacting with a natural herbivore community.
View Article and Find Full Text PDF