Publications by authors named "Jessy Labbe"

Soil-borne microbes can establish compatible relationships with host plants, providing a large variety of nutritive and protective compounds in exchange for photosynthesized sugars. However, the molecular mechanisms mediating the establishment of these beneficial relationships remain unclear. Our previous genetic mapping and whole-genome resequencing studies identified a gene deletion event of a Populus trichocarpa lectin receptor-like kinase gene PtLecRLK1 in Populus deltoides that was associated with poor-root colonization by the ectomycorrhizal fungus Laccaria bicolor.

View Article and Find Full Text PDF

Deuterated chitosan was produced from the filamentous fungus Rhizopus oryzae, cultivated with deuterated glucose in HO medium, without the need for conventional chemical deacetylation. After extraction and purification, the chemical composition and structure were determined by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and small-angle neutron scattering (SANS). C NMR experiments provided additional information about the position of the deuterons in the glucoseamine backbone.

View Article and Find Full Text PDF

Light, water and healthy soil are three essential natural resources required for agricultural productivity. Industrialization of agriculture has resulted in intensification of cropping practices using enormous amounts of chemical pesticides and fertilizers that damage these natural resources. Therefore, there is a need to embrace agriculture practices that do not depend on greater use of fertilizers and water to meet the growing demand of global food requirements.

View Article and Find Full Text PDF

The ectomycorrhizal fungal symbiont Cenococcum geophilum is of high interest as it is globally distributed, associates with many plant species, and has resistance to multiple environmental stressors. C. geophilum is only known from asexual states but is often considered a cryptic species complex, since extreme phylogenetic divergence is often observed within nearly morphologically identical strains.

View Article and Find Full Text PDF

Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches.

View Article and Find Full Text PDF

Summary: Antimicrobial peptides (AMPs) are promising alternative antimicrobial agents. Currently, however, portable, user-friendly and efficient methods for predicting AMP sequences from genome-scale data are not readily available. Here we present amPEPpy, an open-source, multi-threaded command-line application for predicting AMP sequences using a random forest classifier.

View Article and Find Full Text PDF

Lipo-chitooligosaccharides (LCOs) are signaling molecules produced by rhizobial bacteria that trigger the nodulation process in legumes, and by some fungi that also establish symbiotic relationships with plants, notably the arbuscular and ecto mycorrhizal fungi. Here, we show that many other fungi also produce LCOs. We tested 59 species representing most fungal phyla, and found that 53 species produce LCOs that can be detected by functional assays and/or by mass spectroscopy.

View Article and Find Full Text PDF

The apparent antagonism between salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signalling resulting in trade-offs between defence against (hemi)biotrophic and necrotrophic pathogens has been widely described across multiple plant species. However, the underlying mechanism remains to be fully established. The molecular and cellular functions of ANGUSTIFOLIA (AN) were characterised, and its role in regulating the pathogenic response was studied in Arabidopsis.

View Article and Find Full Text PDF

We surveyed root endophytic fungi of the coastal halophyte Suaeda salsa and detected a population of a novel species that we described here as Laburnicola rhizohalophila sp. nov. No sexual sporulating structure was observed.

View Article and Find Full Text PDF

In the last decade, the unprecedented simplicity and flexibility of the CRISPR-Cas system has made it the dominant transformative tool in gene and genome editing. However, this democratized technology is both a boon and a bane, for which we have yet to understand the full potential to investigate and rewrite genomes (also named "genome biodesign"). Rapid CRISPR advances in a range of applications in basic research, agriculture, and clinical applications pose new risks and raise several biosecurity concerns.

View Article and Find Full Text PDF

We identified two poplar ( sp.)-associated microbes, the fungus, strain AG77, and the bacterium, strain BT03, that mutually promote each other's growth. Using culture assays in concert with a novel microfluidic device to generate time-lapse videos, we found growth specific media differing in pH and pre-conditioned by microbial growth led to increased fungal and bacterial growth rates.

View Article and Find Full Text PDF

Mycorrhizal fungi form mutualistic associations with the roots of most land plants and provide them with mineral nutrients from the soil in exchange for fixed carbon derived from photosynthesis. The common symbiosis pathway (CSP) is a conserved molecular signaling pathway in all plants capable of associating with arbuscular mycorrhizal fungi. It is required not only for arbuscular mycorrhizal symbiosis but also for rhizobia-legume and actinorhizal symbioses.

View Article and Find Full Text PDF

The molecular mechanisms underlying mycorrhizal symbioses, the most ubiquitous and impactful mutualistic plant-microbial interaction in nature, are largely unknown. Through genetic mapping, resequencing and molecular validation, we demonstrate that a G-type lectin receptor-like kinase (lecRLK) mediates the symbiotic interaction between Populus and the ectomycorrhizal fungus Laccaria bicolor. This finding uncovers an important molecular step in the establishment of symbiotic plant-fungal associations and provides a molecular target for engineering beneficial mycorrhizal relationships.

View Article and Find Full Text PDF

Fungi are successful eukaryotes of wide distribution. They are known as rich producers of secondary metabolites, especially terpenoids, which are important for fungi-environment interactions. Horizontal gene transfer (HGT) is an important mechanism contributing to genetic innovation of fungi.

View Article and Find Full Text PDF

Background: Microfluidic systems are well-suited for studying mixed biological communities for improving industrial processes of fermentation, biofuel production, and pharmaceutical production. The results of which have the potential to resolve the underlying mechanisms of growth and transport in these complex branched living systems. Microfluidics provide controlled environments and improved optical access for real-time and high-resolution imaging studies that allow high-content and quantitative analyses.

View Article and Find Full Text PDF

Ecto- and endo-mycorrhizal colonization of roots have a positive impact on the overall tree health and growth. A complete molecular understanding of these interactions will have important implications for increasing agricultural or forestry sustainability using plant:microbe-based strategies. These beneficial associations entail extensive morphological changes orchestrated by the genetic reprogramming in both organisms.

View Article and Find Full Text PDF

and genera include common species of soil fungi that are frequently detected as root endophytes in many plants, including spp. However, the ecological roles of these and other endophytic fungi with respect to plant growth and function are still not well understood. The functional ecology of two key taxa from the rhizobiome, PMI93 and PMI82, was studied by coupling forest soil bioassays with environmental metatranscriptomics.

View Article and Find Full Text PDF

Due to public concerns about the decreasing supply of blue water and increasing heat and drought stress on plant growth caused by urbanization, increasing human population and climate change, interest in crassulacean acid metabolism (CAM), a specialized type of photosynthesis enhancing water-use efficiency (WUE) and drought tolerance, has increased markedly. Significant progress has been achieved in both basic and applied research in CAM plants since the beginning of this century. Here we provide a brief overview of the current status of CAM research, and discuss future needs and opportunities in a wide range of areas including systems biology, synthetic biology, and utilization of CAM crops for human benefit, with a focus on the following aspects: 1) application of genome-editing technology and high-throughput phenotyping to functional genomics research in model CAM species and genetic improvement of CAM crops, 2) challenges for multi-scale metabolic modeling of CAM systems, 3) opportunities and new strategies for CAM pathway engineering to enhance WUE and drought tolerance in C (and C) photosynthesis crops, 4) potential of CAM species as resources for food, feed, natural products, pharmaceuticals and biofuels, and 5) development of CAM crops for ecological and aesthetic benefits.

View Article and Find Full Text PDF

Ectomycorrhizal (ECM) fungi establish symbiosis with roots of most trees of boreal and temperate ecosystems and are major drivers of nutrient fluxes between trees and the soil. ECM fungi constantly interact with bacteria all along their life cycle and the extended networks of hyphae provide a habitat for complex bacterial communities. Despite the important effects these bacteria can have on the growth and activities of ECM fungi, little is known about the mechanisms by which these microorganisms interact.

View Article and Find Full Text PDF

Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism.

View Article and Find Full Text PDF

The family Russulaceae is considered an iconic lineage of mostly mushroom-forming basidiomycetes due to their importance as edible mushrooms in many parts of the world, and their ubiquity as ectomycorrhizal symbionts in both temperate and tropical forested biomes. Although much research has been focused on this group, a comprehensive or cohesive synthesis by which to understand the functional diversity of the group has yet to develop. Interest in ectomycorrhizal fungi, of which Russulaceae is a key lineage, is prodigious due to the important roles they play as plant root mutualists in ecosystem functioning, global carbon sequestration, and a potential role in technology development toward environmental sustainability.

View Article and Find Full Text PDF

During symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as 'effectors', i.e.

View Article and Find Full Text PDF

Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance).

View Article and Find Full Text PDF

Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them.

View Article and Find Full Text PDF

Many plant-associated fungi host endosymbiotic endobacteria with reduced genomes. While endobacteria play important roles in these tri-partite plant-fungal-endobacterial systems, the active physiology of fungal endobacteria has not been characterized extensively by systems biology approaches. Here, we use integrated proteomics and metabolomics to characterize the relationship between the endobacterium Mycoavidus sp.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongivkqm9tisbdq8987p7a6lv06d5fhbdi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once