Siloxanes are used in personal care, biomedical, and industrial products. Their worldwide use and persistence in the environment cause consistent exposure for both humans and aquatic animals. Two siloxane congeners, decamethylcyclopentasiloxane (D5; CAS 541-02-6) and octamethylcyclotetrasiloxane (D4; CAS 556-67-2), are among the most prevalent, with measurable levels in air, sediment, water, and biological samples.
View Article and Find Full Text PDFBackground Exercise is associated with a reduced risk of cardiovascular disease. Increased high-density lipoprotein cholesterol (HDL-C) levels are thought to contribute to these benefits, but much of the research in this area has been limited by lack of well-controlled subject selection and exercise interventions. We sought to study the effect of moderate and high-intensity exercise on HDL function, lipid/lipoprotein profile, and other cardiometabolic parameters in a homogeneous population where exercise, daily routine, sleep patterns, and living conditions were carefully controlled.
View Article and Find Full Text PDFBackground: Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy with over 80% of cases already disseminated at diagnosis and facing a dismal five-year survival rate of 35%. EOC cells often spread to the greater omentum where they take-up cholesterol. Excessive amounts of cholesterol can be cytocidal, suggesting that cholesterol efflux through transporters may be important to maintain homeostasis, and this may explain the observation that high expression of the ATP-binding cassette A1 (ABCA1) cholesterol transporter has been associated with poor outcome in EOC patients.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
November 2020
Objective: Patients with schizophrenia have increased long-term mortality attributable to cardiovascular disease and commonly demonstrate features of mixed dyslipidemia with low HDL-C (high-density lipoprotein cholesterol). The removal of cholesterol from cells by HDL via specific ATP-binding cholesterol transporters is a major functional property of HDL, and its measurement as cholesterol efflux capacity (CEC) can predict cardiovascular risk. Whether HDL function is impaired in patients with schizophrenia is unknown.
View Article and Find Full Text PDFCirculating tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) levels are reduced in patients with cardiovascular disease, and TRAIL gene deletion in mice exacerbates atherosclerosis and inflammation. How TRAIL protects against atherosclerosis and why levels are reduced in disease is unknown. Here, multiple strategies were used to identify the protective source of TRAIL and its mechanism(s) of action.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
October 2018
The 'cholesterol efflux capacity (CEC)' assay is a simple in vitro measure of the capacities of individual sera to promote the first step of the reverse cholesterol transport pathway, the delivery of cellular cholesterol to plasma HDL. This review describes the cell biology of this model and critically assesses its application as a marker of cardiovascular risk. We describe the pathways for cell cholesterol export, current cell models used in the CEC assay with their limitations and consider the contribution that measurement of serum CEC provides to our understanding of HDL function in vivo.
View Article and Find Full Text PDFMethods Mol Biol
February 2018
Reverse cholesterol transport (RCT) is one of the main processes that is thought to protect against cardiovascular disease. RCT constitutes the removal of cholesterol from peripheral sites, its transport through the plasma compartment for delivery to the liver for excretion. Here, we describe an in vivo RCT method that incorporates these steps, measuring movement of cholesterol from macrophages to the plasma, the liver, and finally to the feces in mice.
View Article and Find Full Text PDFSphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) is a recently identified phosphodiesterase, which is a secreted -linked glycoprotein. SMPDL3A is highly homologous to acid sphingomyelinase (aSMase), but unlike aSMase cannot cleave sphingomyelin. Rather, SMPDL3A hydrolyzes nucleotide tri- and diphosphates and their derivatives.
View Article and Find Full Text PDFEpidemiologic studies have shown an inverse correlation between high-density lipoprotein (HDL) cholesterol (HDL-C) levels and cardiovascular disease outcomes. However, the hypothesis of a causal relationship between HDL-C and cardiovascular disease has been challenged by genetic and clinical studies. Serum cholesterol efflux capacity (CEC) is an important measure of HDL function in humans.
View Article and Find Full Text PDFApolipoprotein A-I (apoA-I) is the major component of HDL and central to the ability of HDL to stimulate ATP-binding cassette transporter A1 (ABCA1)-dependent, antiatherogenic export of cholesterol from macrophage foam cells, a key player in the pathology of atherosclerosis. Cell-mediated modifications of apoA-I, such as chlorination, nitration, oxidation, and proteolysis, can impair its antiatherogenic function, although it is unknown whether macrophages themselves contribute to such modifications. To investigate this, human monocyte-derived macrophages (HMDMs) were incubated with human apoA-I under conditions used to induce cholesterol export.
View Article and Find Full Text PDFObjective: Cyclosporin A (CsA) is an immunosuppressant commonly used to prevent organ rejection but is associated with hyperlipidemia and an increased risk of cardiovascular disease. Although studies suggest that CsA-induced hyperlipidemia is mediated by inhibition of low-density lipoprotein receptor (LDLr)-mediated lipoprotein clearance, the data supporting this are inconclusive. We therefore sought to investigate the role of the LDLr in CsA-induced hyperlipidemia by using Ldlr-knockout mice (Ldlr(-/-)).
View Article and Find Full Text PDFAims: Macrophage apoptosis is a prominent feature of atherosclerosis, yet whether cell death-protected macrophages would favour the resolution of already established atherosclerotic lesions, and thus hold therapeutic potential, remains unknown.
Methods And Results: We irradiated then transplanted into Apoe(-/-) or LDLr(-/-) recipient mice harbouring established atherosclerotic lesions, bone marrow cells from mice displaying enhanced macrophage survival through overexpression of the antiapoptotic gene hBcl-2 (Mø-hBcl2 Apoe(-/-) or Mø-hBcl2 Apoe(+/+) LDLr(-/-)). Both recipient mice exhibited decreased lesional apoptotic cell content and reduced necrotic areas when repopulated with Mø-hBcl2 mouse-derived bone marrow cells.
Rationale: High-density lipoprotein (HDL) is a heterogeneous population of particles. Differences in the capacities of HDL subfractions to remove cellular cholesterol may explain variable correlations between HDL-cholesterol and cardiovascular risk and inform future targets for HDL-related therapies. The ATP binding cassette transporter A1 (ABCA1) facilitates cholesterol efflux to lipid-free apolipoprotein A-I, but the majority of apolipoprotein A-I in the circulation is transported in a lipidated state and ABCA1-dependent efflux to individual HDL subfractions has not been systematically studied.
View Article and Find Full Text PDFVitamin E membrane transport has been shown to involve the cholesterol transporters SR-BI, ABCA1 and NPC1L1. Our aim was to investigate the possible participation of another cholesterol transporter in cellular vitamin E efflux: ABCG1. In Abcgl-deficient mice, vitamin E concentration was reduced in plasma lipoproteins whereas most tissues displayed a higher vitamin E content compared to wild-type mice.
View Article and Find Full Text PDFDynamins are fission proteins that mediate endocytic and exocytic membrane events and are pharmacological therapeutic targets. These studies investigate whether dynamin II regulates constitutive protein secretion and show for the first time that pharmacological inhibition of dynamin decreases secretion of apolipoprotein E (apoE) and several other proteins constitutively secreted from primary human macrophages. Inhibitors that target recruitment of dynamin to membranes (MiTMABs) or directly target the GTPase domain (Dyngo or Dynole series), dose- and time- dependently reduced the secretion of apoE.
View Article and Find Full Text PDFCholesterol-loaded foam cell macrophages are prominent in atherosclerotic lesions and play complex roles in both inflammatory signaling and lipid metabolism, which are underpinned by large scale reprogramming of gene expression. We performed a microarray study of primary human macrophages that showed that transcription of the sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) gene is up-regulated after cholesterol loading. SMPDL3A protein expression in and secretion from primary macrophages are stimulated by cholesterol loading, liver X receptor ligands, and cyclic AMP, and N-glycosylated SMPDL3A protein is detectable in circulating blood.
View Article and Find Full Text PDFThe objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins.
View Article and Find Full Text PDFObjective: This EAS Consensus Panel critically appraised evidence relevant to the benefit to risk relationship of functional foods with added plant sterols and/or plant stanols, as components of a healthy lifestyle, to reduce plasma low-density lipoprotein-cholesterol (LDL-C) levels, and thereby lower cardiovascular risk.
Methods And Results: Plant sterols/stanols (when taken at 2 g/day) cause significant inhibition of cholesterol absorption and lower LDL-C levels by between 8 and 10%. The relative proportions of cholesterol versus sterol/stanol levels are similar in both plasma and tissue, with levels of sterols/stanols being 500-/10,000-fold lower than those of cholesterol, suggesting they are handled similarly to cholesterol in most cells.
It is recognized that the development of atherosclerosis involves many elements of an inflammatory process, involving components of both the innate and adaptive immune systems. The presence and roles of macrophages and T-cells in atherogenesis are well-established. More recently dendritic cells have been identified in the vasculature and in atherosclerotic lesions.
View Article and Find Full Text PDFMacrophage-specific apolipoprotein E (apoE) secretion plays an important protective role in atherosclerosis. However, the precise signaling mechanisms regulating apoE secretion from primary human monocyte-derived macrophages (HMDMs) remain unclear. Here we investigate the role of protein kinase C (PKC) in regulating basal and stimulated apoE secretion from HMDMs.
View Article and Find Full Text PDFABCG1 is an ABC half-transporter that exports cholesterol from cells to HDL. This study set out to investigate differences in posttranslational processing of two human ABCG1 protein isoforms, termed ABCG1(+12) and ABCG1(-12), that differ by the presence or absence of a 12 amino acid peptide. ABCG1(+12) is expressed in human cells and tissues, but not in mice.
View Article and Find Full Text PDF