K-mer based comparisons have emerged as powerful complements to BLAST-like alignment algorithms, particularly when the sequences being compared lack direct evolutionary relationships. In this chapter, we describe methods to compare k-mer content between groups of long noncoding RNAs (lncRNAs), to identify communities of lncRNAs with related k-mer contents, to identify the enrichment of protein-binding motifs in lncRNAs, and to scan for domains of related k-mer contents in lncRNAs. Our step-by-step instructions are complemented by Python code deposited in Github.
View Article and Find Full Text PDFThe marsupial inactive X chromosome expresses a long noncoding RNA (lncRNA) called that has been proposed to be the functional analog of eutherian Despite the possibility that and encode related functions, the two lncRNAs harbor no linear sequence similarity. However, both lncRNAs harbor domains of tandemly repeated sequence. In , these repeat domains are known to be critical for function.
View Article and Find Full Text PDFThe functions of most long non-coding RNAs (lncRNAs) are unknown. In contrast to proteins, lncRNAs with similar functions often lack linear sequence homology; thus, the identification of function in one lncRNA rarely informs the identification of function in others. We developed a sequence comparison method to deconstruct linear sequence relationships in lncRNAs and evaluate similarity based on the abundance of short motifs called k-mers.
View Article and Find Full Text PDFIn this work, we have examined contributions to the thermodynamics of calmodulin (CaM) binding from the intrinsic propensity for target peptides to adopt an α-helical conformation. CaM target sequences are thought to commonly reside in disordered regions within proteins. Using the ability of TFE to induce α-helical structure as a proxy, the six peptides studied range from having almost no propensity to adopt α-helical structure through to a very high propensity.
View Article and Find Full Text PDF