The previously reported exact potential and multipole moment (EP/MM) method for fast and precise evaluation of the intermolecular electrostatic interaction energies in molecular crystals using the pseudoatom representation of the electron density [Nguyen, Macchi & Volkov (2020), Acta Cryst. A76, 630-651] has been extended to the calculation of the electrostatic potential (ESP), electric field (EF) and electric field gradient (EFG) in an infinite crystal. The presented approach combines an efficient Ewald-type summation (ES) of atomic multipoles up to the hexadecapolar level in direct and reciprocal spaces with corrections for (i) the net polarization of the sample (the `surface term') due to a net dipole moment of the crystallographic unit cell (if present) and (ii) the short-range electron-density penetration effects.
View Article and Find Full Text PDFWe report here the first systematic study of nickel-catalyzed decarbonylation of aromatic aldehydes under relatively mild conditions. Aldehydes with electron donating groups at para and ortho positions are generally successful with our method. For aldehydes with electron-withdrawing groups, significantly higher yields were achieved for ortho-substituted substrates than para ones, probably due to the effects of steric hindrance or electron donors at the ortho position to suppress the Tishchenko reaction, an undesirable side reaction toward homocoupled esters.
View Article and Find Full Text PDF