Publications by authors named "Jessie Villanueva"

Macroautophagy/autophagy-lysosome function promotes growth and survival of cancer cells, making them attractive targets for cancer therapy. One intriguing lysosomal target is PPT1 (palmitoyl-protein thioesterase 1). PPT1 inhibitors derived from chloroquine block autophagy, have significant antitumor activity in preclinical models and are being developed for clinical trials.

View Article and Find Full Text PDF

Upon the 20th Anniversary of the Society for Melanoma Research, we highlight the perspectives of patients aiming to help improve future experiences, outcomes, and their quality of life over the next 20 years. Five melanoma patients generously shared their inspiring and enlightening stories of diagnosis, treatment, and outcomes. Many patients had excellent medical teams that synergistically worked together to provide an accurate diagnosis, effective treatment options, and supportive care.

View Article and Find Full Text PDF

The Society for Melanoma Research (SMR) was created 20 years ago and has unequivocally contributed to the vast progress of the field, particularly for the treatment of melanoma patients with metastatic disease by facilitating synergistic collaborations between clinicians, researchers at the bench, and industry. In commemoration of the 20th anniversary of the first SMR International Congress (held in 2003 in Philadelphia), we look to the future by highlighting the perspectives of the next generation of rising stars, medical, and graduate students across six continents.

View Article and Find Full Text PDF

To commemorate the 20th Anniversary of the Society of Melanoma Research and the first International Melanoma Research Congress held in June of 2003, we have described in brief, how the Society for Melanoma Research (SMR) began, the purpose, goals, and governance of the SMR, and how the society has evolved to support new melanoma researchers. In celebration of the immense progress in treating melanoma patients over the last 20 years and the impact of the SMR on these advances, we have highlighted memories and insight from early SMR members and founders.

View Article and Find Full Text PDF

The inaugural Diversity and Inclusion in Science Session was held during the 2021 Society for Melanoma Research (SMR) congress. The goal of the session was to discuss diversity, equity, and inclusion in the melanoma research community and strategies to promote the advancement of underrepresented melanoma researchers. An international survey was conducted to assess the diversity, equity, and inclusion (DEI) climate among researchers and clinicians within the Society for Melanoma Research (SMR).

View Article and Find Full Text PDF

Resistance to combination BRAF/MEK inhibitor (BRAFi/MEKi) therapy arises in nearly every patient with melanoma, despite promising initial responses. Achieving cures in this expanding BRAFi/MEKi-resistant cohort represents one of the greatest challenges to the field; few experience additional durable benefit from immunotherapy and no alternative therapies exist. To better personalize therapy in cancer patients to address therapy relapse, umbrella trials have been initiated whereby genomic sequencing of a panel of potentially actionable targets guide therapy selection for patients; however, the superior efficacy of such approaches remains to be seen.

View Article and Find Full Text PDF

Targeting MAPK pathway using a combination of BRAF and MEK inhibitors is an efficient strategy to treat melanoma harboring BRAF-mutation. The development of acquired resistance is inevitable due to the signaling pathway rewiring. Combining western blotting, immunohistochemistry, and reverse phase protein array (RPPA), we aim to understanding the role of the mTORC1 signaling pathway, a center node of intracellular signaling network, in mediating drug resistance of BRAF-mutant melanoma to the combination of BRAF inhibitor (BRAFi) and MEK inhibitor (MEKi) therapy.

View Article and Find Full Text PDF

There is a lack of appropriate melanoma models that can be used to evaluate the efficacy of novel therapeutic modalities. Here, we discuss the current state of the art of melanoma models including genetically engineered mouse, patient-derived xenograft, zebrafish, and ex vivo and in vitro models. We also identify five major challenges that can be addressed using such models, including metastasis and tumor dormancy, drug resistance, the melanoma immune response, and the impact of aging and environmental exposures on melanoma progression and drug resistance.

View Article and Find Full Text PDF

Telomere maintenance via telomerase reactivation is a nearly universal hallmark of cancer cells which enables replicative immortality. In contrast, telomerase activity is silenced in most adult somatic cells. Thus, telomerase represents an attractive target for highly selective cancer therapeutics.

View Article and Find Full Text PDF

Bromodomain and extra-terminal inhibitors (BETi) delay tumor growth, in part, through tumor cell intrinsic alterations and initiation of anti-tumor CD8+ T-cell responses. By contrast, BETi effects on pro-tumoral immune responses remain unclear. Here, we show that the next-generation BETi, PLX51107, delayed tumor growth to differing degrees in Braf V600E melanoma syngeneic mouse models.

View Article and Find Full Text PDF

Epigenetic agents such as bromodomain and extra-terminal region inhibitors (BETi) slow tumor growth via tumor intrinsic alterations; however, their effects on antitumor immunity remain unclear. A recent advance is the development of next-generation BETi that are potent and display a favorable half-life. Here, we tested the BETi, PLX51107, for immune-based effects on tumor growth in BRAF V600E melanoma syngeneic models.

View Article and Find Full Text PDF

The tumor suppressor is the most frequently mutated gene in human cancer and serves to restrict tumor initiation and progression. Single-nucleotide polymorphisms (SNP) in and pathway genes can have a marked impact on p53 tumor suppressor function, and some have been associated with increased cancer risk and impaired response to therapy. Approximately 6% of Africans and 1% of African Americans express a p53 allele with a serine instead of proline at position 47 (Pro47Ser).

View Article and Find Full Text PDF

Targeting RAS is one of the greatest challenges in cancer therapy. Oncogenic mutations in NRAS are present in over 25% of melanomas and patients whose tumors harbor NRAS mutations have limited therapeutic options and poor prognosis. Thus far, there are no clinical agents available to effectively target NRAS or any other RAS oncogene.

View Article and Find Full Text PDF

Despite novel therapies for melanoma, drug resistance remains a significant hurdle to achieving optimal responses. NRAS-mutant melanoma is an archetype of therapeutic challenges in the field, which we used to test drug combinations to avert drug resistance. We show that BET proteins are overexpressed in NRAS-mutant melanoma and that high levels of the BET family member BRD4 are associated with poor patient survival.

View Article and Find Full Text PDF

Background: The BRAF protein kinase is widely studied as a cancer driver and therapeutic target. However, the regulation of its expression is not completely understood.

Results: Taking advantage of the RNA-seq data of more than 4800 patients belonging to 9 different cancer types, we show that BRAF mRNA exists as a pool of 3 isoforms (reference BRAF, BRAF-X1, and BRAF-X2) that differ in the last part of their coding sequences, as well as in the length (BRAF-ref: 76 nt; BRAF-X1 and BRAF-X2: up to 7 kb) and in the sequence of their 3'UTRs.

View Article and Find Full Text PDF

The BRAF kinase, within the mitogen activated protein kinase (MAPK) signaling pathway, harbors activating mutations in about half of melanomas and to a significant extent in many other cancers. A single valine to glutamic acid substitution at residue 600 (BRAF) accounts for about 90% of these activating mutations. While BRAF-selective small molecule inhibitors, such as debrafenib and vemurafenib, have shown therapeutic benefit, almost all patients develop resistance.

View Article and Find Full Text PDF

The discovery of activating BRAF mutations in approximately 50% of melanomas has led to the development of MAPK pathway inhibitors, which have transformed melanoma therapy. However, not all BRAF-V600E melanomas respond to MAPK inhibition. Therefore, it is important to understand why tumors with the same oncogenic driver have variable responses to MAPK inhibitors.

View Article and Find Full Text PDF

NRAS-mutant melanomas are extremely aggressive and highly resistant to currently available therapeutic modalities. Hence, new targets and therapeutic strategies for NRAS-driven melanomas are needed. As blocking NRAS directly has not been possible thus far, targeting downstream NRAS effectors, such as MAPK/ERK kinase (MEK), is being evaluated as an alternative therapeutic approach.

View Article and Find Full Text PDF

Aberrant activation of S6 kinase 1 (S6K1) is found in many diseases, including diabetes, aging, and cancer. We developed ATP competitive organometallic kinase inhibitors, EM5 and FL772, which are inspired by the structure of the pan-kinase inhibitor staurosporine, to specifically inhibit S6K1 using a strategy previously used to target other kinases. Biochemical data demonstrate that EM5 and FL772 inhibit the kinase with IC50 value in the low nanomolar range at 100 μM ATP and that the more potent FL772 compound has a greater than 100-fold specificity over S6K2.

View Article and Find Full Text PDF

Melanomas that result from mutations in the gene encoding BRAF often become resistant to BRAF inhibition (BRAFi), with multiple mechanisms contributing to resistance. While therapy-induced autophagy promotes resistance to a number of therapies, especially those that target PI3K/mTOR signaling, its role as an adaptive resistance mechanism to BRAFi is not well characterized. Using tumor biopsies from BRAF(V600E) melanoma patients treated either with BRAFi or with combined BRAF and MEK inhibition, we found that BRAFi-resistant tumors had increased levels of autophagy compared with baseline.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionanq1mmr441ir10qh30i6uqqgjftehrh3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once