Alzheimer Dis Assoc Disord
July 2020
Purpose: To assess whether there are differences in Alzheimer disease (AD)-associated atrophy regions in Chinese and white patients with AD versus cognitively normal older adults, and to test whether associations between clinical severity and gray matter volume are similar or different across these ethnic groups in a cross-sectional analysis.
Materials And Methods: Chinese and white patients with AD, individuals with mild cognitive impairment, and cognitively normal controls (46 white and 48 Chinese) were clinically evaluated at an academic center within 1 year of magnetic resonance imaging acquisition. Clinical severity was assessed using the Clinical Dementia Rating Sum of Boxes and cortical atrophy was measured using voxel-based morphometry as well as Freesurfer.
Alzheimer's disease (AD) prevalence varies by sex, suggesting that sex chromosomes, sex hormones and/or their signaling could potentially modulate AD risk and progression. Low testosterone levels are reported in men with AD. Further, variation in the androgen receptor (AR) gene has been associated with AD risk and cognitive impairment.
View Article and Find Full Text PDFBackground: Alzheimer disease (AD) is a progressive disorder that affects cognitive function. There is increasing support for the role of neuroinflammation and aberrant immune regulation in the pathophysiology of AD. The immunoregulatory human leukocyte antigen (HLA) complex has been linked to susceptibility for a number of neurodegenerative diseases, including AD; however, studies to date have failed to consistently identify a risk HLA haplotype for AD.
View Article and Find Full Text PDFApolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD), but the mechanism by which it causes cognitive decline is unclear. In knockin (KI) mice, human apoE4 causes age-dependent learning and memory impairments and degeneration of GABAergic interneurons in the hippocampal dentate gyrus. Here we report two functional apoE4-KI phenotypes involving sharp-wave ripples (SWRs), hippocampal network events critical for memory processes.
View Article and Find Full Text PDF