Publications by authors named "Jessie Guidry"

Background: Ang-II (angiotensin II) impairs the function of the antihypertensive enzyme ACE2 (angiotensin-converting enzyme 2) by promoting its internalization, ubiquitination, and degradation, thus contributing to hypertension. However, few ACE2 ubiquitination partners have been identified, and their role in hypertension remains unknown.

Methods: Proteomics and bioinformatic analyses were used to identify ACE2 ubiquitination partners in the brain, heart, and kidney of hypertensive C57BL6/J mice of both sexes.

View Article and Find Full Text PDF
Article Synopsis
  • Angiotensin-II negatively affects ACE2, an important antihypertensive enzyme, by promoting its breakdown, contributing to high blood pressure.
  • Researchers identified UBR1 as a key protein that helps in the ubiquitination of ACE2, particularly heightened in hypertensive conditions and showing sex-specific regulation by testosterone.
  • Silencing UBR1 in mice led to increased ACE2 levels and a temporary drop in blood pressure, suggesting that targeting UBR1 and related proteins could be a new treatment strategy for hypertension.
View Article and Find Full Text PDF

Liver cytochrome P450s (CYPs) of the endoplasmic reticulum (ER) are involved in the metabolism of exogenous and endogenous chemicals. The ER is not uniform, but possesses ordered lipid microdomains containing higher levels of saturated fatty acids, sphingomyelin, and cholesterol and disordered regions containing higher levels of polyunsaturated fatty acid chains. The various forms of drug-metabolizing P450s partition to either the ordered or disordered lipid microdomains with different degrees of specificity.

View Article and Find Full Text PDF

Aims: Angiotensin-converting enzyme 2 (ACE2) is a critical component of the compensatory renin-angiotensin system that is down-regulated during the development of hypertension, possibly via ubiquitination. However, little is known about the mechanisms involved in ACE2 ubiquitination in neurogenic hypertension. This study aimed at identifying ACE2 ubiquitination partners, establishing causal relationships and clinical relevance, and testing a gene therapy strategy to mitigate ACE2 ubiquitination in neurogenic hypertension.

View Article and Find Full Text PDF

Despite the suppression of human immunodeficiency virus (HIV) replication by combined antiretroviral therapy (cART), 50-60% of HIV-infected patients suffer from HIV-associated neurocognitive disorders (HAND). Studies are uncovering the role of extracellular vesicles (EVs), especially exosomes, in the central nervous system (CNS) due to HIV infection. We investigated links among circulating plasma exosomal (crExo) proteins and neuropathogenesis in simian/human immunodeficiency virus (SHIV)-infected rhesus macaques (RM) and HIV-infected and cART treated patients (Patient-Exo).

View Article and Find Full Text PDF

Treatment of patients with triple-negative breast cancer (TNBC) has been challenging due to the absence of well-defined molecular targets and the highly invasive and proliferative nature of TNBC cells. Current treatments against TNBC have shown little promise due to high recurrence rate in patients. Consequently, there is a pressing need for novel and efficacious therapies against TNBC.

View Article and Find Full Text PDF

Background: Nutraceutical foods, like walnuts which are rich in immunonutrients, can have medicinal benefits. Dietary walnuts have been shown to slow or prevent tumor growth in mice genetically programmed to grow breast or prostate tumors. This study investigated whether walnuts could exert the same preventable effect in a transplantable carcinoma rat model.

View Article and Find Full Text PDF

The proteomes of ordered and disordered lipid microdomains in rat liver microsomes from control and phenobarbital (PB)-treated rats were determined after solubilization with Brij 98 and analyzed by tandem mass tag (TMT)-liquid chromatography-mass spectrometry (LC-MS). This allowed characterization of the liver microsomal proteome and the effects of phenobarbital-mediated induction, focusing on quantification of the relative levels of the drug-metabolizing enzymes._The microsomal proteome from control rats was represented by 333 (23%) proteins from ordered lipid microdomains, 517 (36%) proteins from disordered lipid domains, and 587 (41%) proteins that uniformly distributed between lipid microdomains.

View Article and Find Full Text PDF

Differentially expressed (DE) proteins in the cortical microvessels (MVs) of young, middle-aged, and old male and female mice were evaluated using discovery-based proteomics analysis (> 4,200 quantified proteins/group). Most DE proteins (> 90%) showed no significant differences between the sexes; however, some significant DE proteins showing sexual differences in MVs decreased from young (8.3%), to middle-aged (3.

View Article and Find Full Text PDF

Proper regulation of microtubule (MT) stability and dynamics is vital for essential cellular processes, including axonal transportation and synaptic growth and remodeling in neurons. In the present study, we demonstrate that the Drosophila ankyrin repeat and KH domain-containing protein Mask negatively affects MT stability in both larval muscles and motor neurons. In larval muscles, loss-of-function of mask increases MT polymer length, and in motor neurons, loss of mask function results in overexpansion of the presynaptic terminal at the larval neuromuscular junctions (NMJs).

View Article and Find Full Text PDF

Effective antiretroviral therapy (ART) has significantly reduced mortality of people living with HIV (PLWH), and the prevalence of at-risk alcohol use is higher among PLWH. Increased survival and aging of PLWH is associated with increased prevalence of metabolic comorbidities especially among menopausal women, and adipose tissue metabolic dysregulation may be a significant contributing factor. We examined the differential effects of chronic binge alcohol (CBA) administration and ovariectomy (OVX) on the omental adipose tissue (OmAT) proteome in a subset of simian immunodeficiency virus (SIV)-infected macaques of a longitudinal parent study.

View Article and Find Full Text PDF
Article Synopsis
  • Sex significantly impacts the function of brain microvessels (MVs) and their vulnerability to neurological diseases, though the specific mechanisms remain unclear.
  • A study using RNA sequencing on MVs from young male and female rats found that 298 genes showed significant differences in expression, with more genes being expressed in female MVs.
  • The research highlights distinct pathways affected by sex, with males showing pathways related to lipid synthesis and females having pathways involved in translation, setting the stage for further investigation into sex-specific neurological disease mechanisms.
View Article and Find Full Text PDF

Depolarized/damaged mitochondria aggregate at the perinuclear region prior to mitophagy in cells treated with mitochondrial stressors. However, the cellular mechanism(s) by which damaged mitochondria are transported and remain aggregated at the perinuclear region is unknown. Here, we demonstrate that mitofusins (Mfn1/2) are post-translationally modified by SUMO2 (Small Ubiquitin-related Modifier 2) in Human embryonic kidney 293 (Hek293) cells treated with protonophore CCCP and proteasome inhibitor MG132, both known mitochondrial stressors.

View Article and Find Full Text PDF

Iron homeostasis offers a significant bacterial vulnerability because pathogens obtain essential iron from their mammalian hosts, but host-defenses maintain vanishingly low levels of free iron. Although pathogens have evolved mechanisms to procure host-iron, these depend on well-regulated iron homeostasis. To disrupt iron homeostasis, our work has targeted iron mobilization from the iron storage protein bacterioferritin (BfrB) by blocking a required interaction with its cognate ferredoxin partner (Bfd).

View Article and Find Full Text PDF

Proteins that oxidize extracellular substrates in Gram-positive bacteria are poorly understood. is an actinobacterium that respires aerobically on extracellular ferrous ions at pH 1.5.

View Article and Find Full Text PDF

Purpose: Stress can lead to short- or long-term changes in phenotype. Accumulating evidence also supports the transmission of maladaptive phenotypes, induced by adverse stressors, through the germline to manifest in subsequent generations, providing a novel mechanistic basis for the heritability of disease. In the present study in mice, we tested the hypothesis that repeated presentations of a nonharmful conditioning stress, demonstrated previously to protect against retinal ischemia, will also provide ischemic protection in the retinae of their untreated, first-generation (F1) adult offspring.

View Article and Find Full Text PDF

We have previously shown that angiotensin-converting enzyme 2 (ACE2), an enzyme counterbalancing the deleterious effects of angiotensin type 1 receptor activation by production of vasodilatory peptides Angiotensin (Ang)-(1-9) and Ang-(1-7), is internalized and degraded in lysosomes following chronic Ang-II treatment. However, the molecular mechanisms involved in this effect remain unknown. In an attempt to identify the accessory proteins involved in this effect, we conducted a proteomic analysis in ACE2-transfected HEK293T cells.

View Article and Find Full Text PDF

Background: Sialolithiasis or salivary gland stones are associated with high clinical morbidity. The advances in the treatment of sialolithiasis has been limited, however, by our understanding of their composition. More specifically, there is little information regarding the formation and composition of the protein matrix, the role of mineralogical deposition, or the contributions of cell epithelium and secretions from the salivary glands.

View Article and Find Full Text PDF

Sex differences in mitochondrial numbers and function are present in large cerebral arteries, but it is unclear whether these differences extend to the microcirculation. We performed an assessment of mitochondria-related proteins in cerebral microvessels (MVs) isolated from young, male and female, Sprague-Dawley rats. MVs composed of arterioles, capillaries, and venules were isolated from the cerebrum and used to perform a 3 versus 3 quantitative, multiplexed proteomics experiment utilizing tandem mass tags (TMT), coupled with liquid chromatography/mass spectrometry (LC/MS).

View Article and Find Full Text PDF

The pathogenic mechanisms of acute lung injury due to direct and indirect pulmonary insults are incompletely understood. Using an unbiased, discovery and quantitative proteomic approach, we examined bronchoalveolar lavage fluid (BALF) proteome following lipopolysaccharide (LPS)-induced direct and indirect lung injury in mice. A total of 1017 proteins were both identified and quantitated in BALF from control, intratracheal (I.

View Article and Find Full Text PDF

Oxidative stress and chronic inflammation in arterial walls have been implicated in intracranial aneurysm (IA) formation and rupture. Dimethyl fumarate (DMF) exhibits immunomodulatory properties, partly via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway which reduces oxidative stress by inducing the antioxidant response element (ARE). This study evaluated the effects of DMF both in vitro, using tumor necrosis factor (TNF)-α-treated vascular smooth muscle cells (VSMC), and in vivo, using a murine elastase model to induce aneurysm formation.

View Article and Find Full Text PDF

During their parasitic life cycle, through sandflies and vertebrate hosts, parasites confront strikingly different environments, including abrupt changes in pH and temperature, to which they must rapidly adapt. These adaptations include alterations in gene expression, metabolism, and morphology, allowing them to thrive as promastigotes in the sandfly and as intracellular amastigotes in the vertebrate host. A critical aspect of metabolic adaptation to these changes is maintenance of efficient mitochondrial function in the hostile vertebrate environment.

View Article and Find Full Text PDF

Insulinoma-associated-1 (INSM1) is a key protein functioning as a transcriptional repressor in neuroendocrine differentiation and is activated by N-Myc in human neuroblastoma (NB). INSM1 modulates the phosphoinositide 3-kinase (PI3K)-AKT Ser/Thr kinase (AKT)-glycogen synthase kinase 3β (GSK3β) signaling pathway through a positive-feedback loop, resulting in N-Myc stabilization. Accordingly, INSM1 has emerged as a critical player closely associated with N-Myc in facilitating NB cell growth.

View Article and Find Full Text PDF

Purpose: Diverse groups of proteins play integral roles in both the physiology and pathophysiology of the retina. However, thorough proteomic analyses of retinas of experimental species are currently unavailable. The purpose of the present paper is providing the field with a comprehensive proteomic characterization of the retina of a commonly used laboratory mouse using a discovery-based mass spectrometry (MS) approach.

View Article and Find Full Text PDF