Chronic Chagas disease cardiomyopathy (CCC) is the most frequent and severe form of this parasitic disease. CCC is caused by a progressive inflammation in the heart, resulting in alterations that can culminate in heart failure and death. The use of dendritic cells (DCs) appears as an option for the development of treatments due to their important role in regulating immune responses.
View Article and Find Full Text PDFAsthma is a chronic, complex and heterogeneous inflammatory illness, characterized by obstruction of the lower airways. About 334 million people worldwide suffer from asthma, and these estimates, as well as the severity of the disease, have increased in the last decades. Glucocorticoids are currently the most widely used drugs in the treatment and control of asthma symptoms, but their prolonged use can cause serious adverse effects.
View Article and Find Full Text PDFAllergy Asthma Immunol Res
November 2018
This corrects the article on p. 406 in vol. 10, PMID: 29949837.
View Article and Find Full Text PDFBrazil is a middle-income country undergoing the epidemiological transition. Effects of changes in daily life habits and access to clean water, sanitation and urban services on a growing urban population have contributed to a double burden of both infectious and noncommunicable chronic diseases. Studies have indicated that parasite infections may modulate the human immune system and influence the development of allergic conditions such as asthma.
View Article and Find Full Text PDFAllergy Asthma Immunol Res
July 2018
Purpose: The use of tolerogenic dendritic cells (TolDCs) to control exacerbated immune responses may be a prophylactic and therapeutic option for application in autoimmune and allergic conditions. The objective of this work was to evaluate the effects of TolDC administration in a mouse model of allergic airway inflammation caused by mite extract.
Methods: Mouse bone marrow-derived TolDCs were induced by incubation with granulocyte-macrophage colony-stimulating factor (GM-CSF) and dexamethasone, and then characterized by flow cytometry and cytokine production by enzyme-linked immunosorbent assay (ELISA).
4-(Nitrophenyl)hydrazone derivatives of N-acylhydrazone were synthesized and screened for suppress lymphocyte proliferation and nitrite inhibition in macrophages. Compared to an unsubstituted N-acylhydrazone, active compounds were identified within initial series when hydroxyl, chloride and nitro substituents were employed. Structure-activity relationship was further developed by varying the position of these substituents as well as attaching structurally-related substituents.
View Article and Find Full Text PDF