Genome instability is a hallmark of aging, with the highly repetitive ribosomal DNA (rDNA) within the nucleolus being particularly prone to genome instability. Nucleolar enlargement accompanies aging in organisms ranging from yeast to mammals, and treatment with many antiaging interventions results in small nucleoli. Here, we report that an engineered system to reduce nucleolar size robustly extends budding yeast replicative lifespan in a manner independent of protein synthesis rate or rDNA silencing.
View Article and Find Full Text PDFIn response to DNA double strand damage, ongoing transcription is inhibited to facilitate accurate DNA repair while transcriptional recovery occurs after DNA repair is complete. However, the mechanisms at play and identity of the transcripts being regulated in this manner are unclear. In contrast to the situation following UV damage, we found that transcriptional recovery after ionizing radiation (IR) occurs in a manner independent of the HIRA histone chaperone.
View Article and Find Full Text PDFTardigrades are remarkable in their ability to survive extreme environments. The damage suppressor (Dsup) protein is thought responsible for their extreme resistance to reactive oxygen species (ROS) generated by irradiation. Here we show that expression of Dsup in reduces oxidative DNA damage and extends the lifespan of budding yeast exposed to chronic oxidative genotoxicity.
View Article and Find Full Text PDFThe histone chaperone chromatin assembly factor 1 (CAF-1) deposits two nascent histone H3/H4 dimers onto newly replicated DNA forming the central core of the nucleosome known as the tetrasome. How CAF-1 ensures there is sufficient space for the assembly of tetrasomes remains unknown. Structural and biophysical characterization of the lysine/glutamic acid/arginine-rich (KER) region of CAF-1 revealed a 128-Å single alpha-helix (SAH) motif with unprecedented DNA-binding properties.
View Article and Find Full Text PDFAltered metabolism has become an emerging feature of cancer cells impacting their proliferation and metastatic potential in myriad ways. Proliferating heterogeneous tumor cells are surrounded by other resident or infiltrating cells, along with extracellular matrix proteins, and other secretory factors constituting the tumor microenvironment. The diverse cell types of the tumor microenvironment exhibit different molecular signatures that are regulated at their genetic and epigenetic levels.
View Article and Find Full Text PDFUntil recently, the favored method for making directed modifications to the budding yeast genome involved the introduction of a DNA template carrying the desired genetic changes along with a selectable marker, flanked by homology arms. This approach both limited the ability to make changes within genes due to disruption by the introduced selectable marker and prevented the use of that selectable marker for subsequent genomic manipulations. Following the discovery of CRISPR-Cas9-mediated genome editing, protocols were developed for modifying any DNA region of interest in a similar single transformation step without the need for a permanent selectable marker.
View Article and Find Full Text PDFWe tested the causality between education and smoking using the natural experiment of discordant twin pairs allowing to optimally control for background genetic and childhood social factors. Data from 18 cohorts including 10,527 monozygotic (MZ) and same-sex dizygotic (DZ) twin pairs discordant for education and smoking were analyzed by linear fixed effects regression models. Within twin pairs, education levels were lower among the currently smoking than among the never smoking co-twins and this education difference was larger within DZ than MZ pairs.
View Article and Find Full Text PDFDNA double strand breaks (DSBs) constantly arise in cells during normal cellular processes or upon exposure to genotoxic agents, and are repaired mostly by homologous recombination (HR) and non-homologous end joining (NHEJ). One key determinant of DNA DSB repair pathway choice is the processing of broken DNA ends to generate single strand DNA (ssDNA) overhangs, a process termed DNA resection. The generation of ssDNA overhangs commits DSB repair through HR and inhibits NHEJ.
View Article and Find Full Text PDFFront Cell Dev Biol
June 2022
DNA double-strand breaks (DSBs), the most deleterious DNA lesions, are primarily repaired by two pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ), the choice of which is largely dependent on cell cycle phase and the local chromatin landscape. Recent studies have revealed that post-translational modifications on histones play pivotal roles in regulating DSB repair pathways including repair pathway choice. In this review, we present our current understanding of how these DSB repair pathways are employed in various chromatin landscapes to safeguard genomic integrity.
View Article and Find Full Text PDFDNA double-strand break (DSB) repair by homologous recombination is confined to the S and G phases of the cell cycle partly due to 53BP1 antagonizing DNA end resection in G phase and non-cycling quiescent (G) cells where DSBs are predominately repaired by non-homologous end joining (NHEJ). Unexpectedly, we uncovered extensive MRE11- and CtIP-dependent DNA end resection at DSBs in G murine and human cells. A whole genome CRISPR/Cas9 screen revealed the DNA-dependent kinase (DNA-PK) complex as a key factor in promoting DNA end resection in G cells.
View Article and Find Full Text PDFAfter a DNA double-strand break, cells utilize either non-homologous end joining or homologous recombination to repair the broken DNA ends. Homologous recombination requires extensive nucleolytic processing of one of the DNA strands, resulting in long stretches of 3' single-strand DNA overhangs. Typically, single-stranded DNA is measured using immunofluorescence microscopy to image the foci of replication protein A, a single-stranded DNA-binding protein.
View Article and Find Full Text PDFUnlike all other biological molecules that are degraded and replaced if damaged, DNA must be repaired as chromosomes cannot be replaced. Indeed, DNA endures a wide variety of structural damage that need to be repaired accurately to maintain genomic stability and proper functioning of cells and to prevent mutation leading to disease. Given that the genome is packaged into chromatin within eukaryotic cells, it has become increasingly evident that the chromatin context of DNA both facilitates and regulates DNA repair processes.
View Article and Find Full Text PDFComparing twins from same- and opposite-sex pairs can provide information on potential sex differences in a variety of outcomes, including socioeconomic-related outcomes such as educational attainment. It has been suggested that this design can be applied to examine the putative role of intrauterine exposure to testosterone for educational attainment, but the evidence is still disputed. Thus, we established an international database of twin data from 11 countries with 88,290 individual dizygotic twins born over 100 years and tested for differences between twins from same- and opposite-sex dizygotic pairs in educational attainment.
View Article and Find Full Text PDFThe RING-type E3 ubiquitin ligases RNF8 and RNF168 recruit DNA damage response (DDR) factors to chromatin flanking DNA double strand breaks (DSBs) including 53BP1, which protects DNA ends from resection during DNA DSB repair by non-homologous end joining (NHEJ). Deficiency of RNF8 or RNF168 does not lead to demonstrable NHEJ defects, but like deficiency of 53BP1, the combined deficiency of XLF and RNF8 or RNF168 leads to diminished NHEJ in lymphocytes arrested in G/G phase. The function of RNF8 in NHEJ depends on its E3 ubiquitin ligase activity.
View Article and Find Full Text PDFDNA double-strand break (DSB) repair by homologous recombination (HR) is thought to be restricted to the S- and G- phases of the cell cycle in part due to 53BP1 antagonizing DNA end resection in G-phase and non-cycling quiescent (G) cells. Here, we show that LIN37, a component of the DREAM transcriptional repressor, functions in a 53BP1-independent manner to prevent DNA end resection and HR in G cells. Loss of LIN37 leads to the expression of HR proteins, including BRCA1, BRCA2, PALB2, and RAD51, and promotes DNA end resection in G cells even in the presence of 53BP1.
View Article and Find Full Text PDFOur nuclear genomes are complexed with histone proteins to form nucleosomes, the repeating units of chromatin which function to package and limit unscheduled access to the genome. In response to helix-distorting DNA lesions and DNA double-strand breaks, chromatin is disassembled around the DNA lesion to facilitate DNA repair and it is reassembled after repair is complete to reestablish the epigenetic landscape and regulating access to the genome. DNA damage also triggers decondensation of the local chromatin structure, incorporation of histone variants and dramatic transient increases in chromatin mobility to facilitate the homology search during homologous recombination.
View Article and Find Full Text PDFIntroduction: Perinatal outcomes for singleton pregnancies are poorer, on average, for Aboriginal people than non-Aboriginal people, but little is known about Aboriginal multifetal pregnancies. Yet multifetal pregnancies and births are often more complicated and have poorer outcomes than singleton pregnancies. We describe the pregnancies, births and perinatal outcomes for Aboriginal twins born in Western Australia (WA) and New South Wales (NSW) with comparisons to Aboriginal singletons in both states and to non-Aboriginal births in NSW.
View Article and Find Full Text PDFA whole-genome CRISPR/Cas9 screen identified ATP2A2, the gene encoding the Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2 protein, as being important for V(D)J recombination. SERCAs are ER transmembrane proteins that pump Ca2+ from the cytosol into the ER lumen to maintain the ER Ca2+ reservoir and regulate cytosolic Ca2+-dependent processes. In preB cells, loss of SERCA2 leads to reduced V(D)J recombination kinetics due to diminished RAG-mediated DNA cleavage.
View Article and Find Full Text PDFMethionine restriction (MR) dramatically extends the healthspan of several organisms. Methionine-restricted rodents have less age-related pathology and increased longevity as compared with controls, and recent studies suggest that humans might benefit similarly. Mechanistically, it is likely that the decreased IGF-1 signaling that results from MR underlies the benefits of this regimen.
View Article and Find Full Text PDFTwin Res Hum Genet
December 2020
There is a commonly observed association between chronic disease and psychological distress, but many potential factors could confound this association. This study investigated the association using a powerful twin study design that can control for unmeasured confounders that are shared between twins, including genetic and environmental factors. We used twin-paired cross-sectional data from the Adult Health and Lifestyle Questionnaire collected by Twins Research Australia from 2014 to 2017.
View Article and Find Full Text PDF