Numerous applications of noncanonical amino acids (ncAAs) in basic biology and therapeutic development require efficient protein biosynthesis using an expanded genetic code. However, achieving such incorporation at repurposed stop codons in cells is generally inefficient and limited by complex cellular processes that preserve the fidelity of protein synthesis. A more comprehensive understanding of the processes that contribute to ncAA incorporation would aid in the development of genomic engineering strategies for augmenting genetic code manipulation.
View Article and Find Full Text PDFProtein expression with genetically encoded noncanonical amino acids (ncAAs) benefits a broad range of applications, from the discovery of biological therapeutics to fundamental biological studies. A major factor limiting the use of ncAAs is the lack of orthogonal translation systems (OTSs) that support efficient genetic code expansion at repurposed stop codons. Aminoacyl-tRNA synthetases (aaRSs) have been extensively evolved in but are not always orthogonal in eukaryotes.
View Article and Find Full Text PDFYeast display has been used to advance many critical research areas, including the discovery of unique protein binders and biological therapeutics. In parallel, noncanonical amino acids (ncAAs) have been used to tailor antibody-drug conjugates and enable discovery of therapeutic leads. Together, these two technologies have allowed for generation of synthetic antibody libraries, where the introduction of ncAAs in yeast-displayed proteins allows for library screening for therapeutically relevant targets.
View Article and Find Full Text PDFArchaeal pyrrolysyl-tRNA synthetases (PylRSs) have been used to genetically encode over 200 distinct noncanonical amino acids (ncAAs) in proteins in and mammalian cells. This vastly expands the range of chemical functionality accessible within proteins produced in these organisms. Despite these clear successes, explorations of PylRS function in yeast remain limited.
View Article and Find Full Text PDFMethods Mol Biol
March 2022
Genetic code expansion has allowed for extraordinary advances in enhancing protein chemical diversity and functionality, but there remains a critical need for understanding and engineering genetic code expansion systems for improved efficiency. Incorporation of noncanonical amino acids (ncAAs) at stop codons provides a site-specific method for introducing unique chemistry into proteins, though often at reduced yields compared to wild-type proteins. A powerful platform for ncAA incorporation supports both the expression and evaluation of chemically diverse proteins for a broad range of applications.
View Article and Find Full Text PDFGenetic code expansion is a powerful approach for advancing critical fields such as biological therapeutic discovery. However, the machinery for genetically encoding noncanonical amino acids (ncAAs) is only available in limited plasmid formats, constraining potential applications. In extreme cases, the introduction of two separate plasmids, one containing an orthogonal translation system (OTS) to facilitate ncAA incorporation and a second for expressing a ncAA-containing protein of interest, is not possible due to a lack of the available selection markers.
View Article and Find Full Text PDFEngineering protein translation machinery to incorporate noncanonical amino acids (ncAAs) into proteins has advanced applications ranging from proteomics to single-molecule studies. As applications of ncAAs emerge, efficient ncAA incorporation is crucial to exploiting unique chemistries. We have established a quantitative reporter platform to evaluate ncAA incorporation in response to the TAG (amber) codon in yeast.
View Article and Find Full Text PDFProgrammable control over an addressable global regulator would enable simultaneous repression of multiple genes and would have tremendous impact on the field of synthetic biology. It has recently been established that CRISPR/Cas systems can be engineered to repress gene transcription at nearly any desired location in a sequence-specific manner, but there remain only a handful of applications described to date. In this work, we report development of a vector possessing a CRISPathBrick feature, enabling rapid modular assembly of natural type II-A CRISPR arrays capable of simultaneously repressing multiple target genes in Escherichia coli.
View Article and Find Full Text PDF