Curr Opin Plant Biol
June 2018
Current conceptions of sucrose export largely neglect the effect of transpiration-induced water potential gradients within leaf mesophyll, even as the mix of convection and diffusion in the pre-phloem path remains uncertain. It is also generally held that the relative importance of convection and diffusion in the pre-phloem path is controlled by the ratio of their respective mass transfer coefficients. Here, we consider pre-phloem sucrose transport in the presence of adverse water potential gradients, finding that whether convection impedes or aids sucrose delivery to the phloem is independent of the permeability of the plasmodesmata to bulk flow, and depends only on assimilation rate, path-length, and the diffusivity.
View Article and Find Full Text PDFTrees present a critical challenge to long-distance transport because as a tree grows in height and the transport pathway increases in length, the hydraulic resistance of the vascular tissue should increase. This has led many to question whether trees can rely on a passive transport mechanism to move carbohydrates from their leaves to their roots. Although species that actively load sugars into their phloem, such as vines and herbs, can increase the driving force for transport as they elongate, it is possible that many trees cannot generate high turgor pressures because they do not use transporters to load sugar into the phloem.
View Article and Find Full Text PDF