For improved cell integration, tissue engineering scaffolds must be designed to degrade over time. Typically, the chemistry of scaffolds is modified to alter the degradation profile by using different hydrolytic or enzymatic sites within a material. It is more challenging, however, to fabricate self-assembling, injectable scaffolds that provide tunable degradation.
View Article and Find Full Text PDFCells are sensitive to physical cues in their environment, such as the stiffness of the substrate, peptide density, and peptide affinity. Understanding how neural stem cells (NSCs) sense and respond to these matrix cues has the potential to improve disease outcome, particularly if a regenerative response can be exploited. While the material properties are known to influence other stem cells, little is known about how NSC differentiation is altered by this interplay of mechanical, or bulk properties, with peptide concentration and affinity, or microscale properties.
View Article and Find Full Text PDFCurrent research in prosthetic device design aims to mimic natural movements using a feedback system that connects to the patient's own nerves to control the device. The first step in using neurons to control motion is to make and maintain contact between neurons and the feedback sensors. Therefore, the goal of this project was to determine if changes in electrode resistance could be detected when a neuron extended a neurite to contact a sensor.
View Article and Find Full Text PDF2D in vitro studies have demonstrated that Schwann cells prefer scaffolds with mechanical modulus approximately 10× higher than the modulus preferred by nerves, limiting the ability of many scaffolds to promote both neuron extension and Schwann cell proliferation. Therefore, the goals of this work are to develop and characterize microgel-based scaffolds that are tuned over the stiffness range relevant to neural tissue engineering and investigate Schwann cell morphology, viability, and proliferation within 3D scaffolds. Using thiol-ene reaction, microgels with surface thiols are produced and crosslinked into hydrogels using a multiarm vinylsulfone (VS).
View Article and Find Full Text PDFTissue Eng Part B Rev
June 2016
Neurons and neural stem cells are sensitive to their mechanical and topographical environment, and cell-substrate binding contributes to this sensitivity to activate signaling pathways for basic cell functions. Many transmembrane proteins transmit signals into and out of the cell, including integrins, growth factor receptors, G-protein-coupled receptors, cadherins, cell adhesion molecules, and ion channels. Specifically, integrins are one of the main transmembrane proteins that transmit force across the cell membrane between a cell and its extracellular matrix, making them critical in the study of cell-material interactions.
View Article and Find Full Text PDFDevelopment of hydrogel-based tissue engineering constructs is growing at a rapid rate, yet translation to patient use has been sluggish. Years of costly preclinical tests are required to predict clinical performance and safety of these devices. The tests are invasive, destructive to the samples and, in many cases, are not representative of the ultimate in vivo scenario.
View Article and Find Full Text PDFJ Biomed Mater Res A
February 2015
Delivery of bioactive molecules is a critical step in fabricating materials for regenerative medicine, yet, this step is particularly challenging in hydrated scaffolds such as hydrogels. Although bulk photocrosslinked poly(ethylene glycol) (PEG) hydrogels have been used for a variety of tissue engineering applications, their capability as drug delivery scaffolds has been limited due to undesirable release profiles and reduction in bioactivity of molecules. To solve these problems, this article presents the fabrication of degradable PEG microgels, which are micron-sized spherical hydrogels, to deliver bioactive nerve growth factor (NGF).
View Article and Find Full Text PDFThis work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.
View Article and Find Full Text PDF